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Abstract

Artificial Intelligence is exponentially evolving into a solution to many of humanity’s complex problems. In this context, healthcare
is benefiting from this technology and all its branches to improve the level of services offered, including cardiac health services.
Cardiovascular diseases have always been among the most common and deadly diseases around the world, as studies have con-
sistently shown. However, Artificial Intelligence services offer several tools to improve the diagnosis of these diseases and even
predict their occurrence. In this study, four models are created and trained with “PhsyioNet Smart Health for Assessing the Risk of
Events via ECG Database” to analyze the characteristics of heart rate variability and predict the occurrence of heart diseases and
cerebrovascular events. The results obtained support the confidence in the use of Artificial Intelligence in cardiology, where Support
Vector Machines, Deep Neural Networks, and XGBoost achieved an accuracy of 91.80%, 90.19%, and 89.10%, respectively.
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1. Introduction

Cardiovascular Diseases (CVDs) cause the most deaths and are therefore known as the most dangerous disease
worldwide. According to the latest figures from the World Health Organization (WHO) in the field of cardiovascular
diseases, the number of deaths caused by them increased from 12.1 million to 18.6 million between 1990 and 2019,
with deaths accounting for 32% of global mortality in 2019. Moreover, cardiovascular diseases are not only a major
cause of health conflict, but also of economic burden. According to ”"Medical Expenditure Panel Survey,” the costs
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due to CVDs were estimated to be $378.0 billion in the United States alone between 2017 and 2018, including $226.0
billion in expenditures and $151.8 billion in lost future productivity [1,2].

1.1. Artificial Intelligence in Healthcare: A New Cardiology Era

The deadly cardiovascular diseases urge to find efficient solutions that can help in the early diagnosis of these
diseases and, if possible, even predict their occurrence. Traditional methods to detect these diseases include elec-
trocardiogram, echocardiography, coronary angiography, stress test, magnetic resonance imaging or intracoronary
ultrasound. However, technological developments, especially Information and Communication Technologies (ICT),
and the rise of Artificial Intelligence (AI) and its variants are helping to improve the quality of healthcare services and
thus facilitate the diagnosis of CVDs. Moreover, Al tools are considered the next revolution in cardiology as they help
provide faster and more accurate patient care outcomes. Moreover, Al will soon transform the science of heart health,
as its tools could outperform experts in diagnosing or even predicting CVDs [3,4].

1.2. Heart Rate Variability as a CVD Indicator

Recently, interest in the use of heart rate variability (HRV) as an indicator of cardiovascular diseases has increased,
especially with the development of Al and the data analysis capabilities offered by its branches: Machine Learning
and Deep Learning. Moreover, HRV is known as the beat-to-beat variation in heart rate or the duration of the RR
peak interval, where R is a wave of the QRS complex extracted from a cardiac ECG signal. Knowing that changes in
the autonomic regulation of the heart can be read from the temporal variations in heart rate, the parameters extracted
from HRV data are divided into three main categories: Time domain, Frequency Domain and Non-Linear parameters.
These categories are listed in Table 1 below [5].

Table 1. Heart Rate Variability Parameters.

Group Parameter Unit Description
Mean NN (ms) Mean of NN interval
Time D in F SDNN (ms) Standard deviation of NN intervals
ime Domain Features RMSSD (ms) Square root of the mean squared differences of successive NN intervals
PNNS50 (ms) Proportion of interval differences of successive NN intervals greater than 50 ms
VLF (msZ) Power in very low frequency range (0-0.04 Hz)
- b in P . LF (msz) Power in low frequency range (0.04-0.15 Hz)
requency Lomain Farameters HF (ms2) HF ms2 Power in high frequency range (0.15-0.4 Hz)
LF/HF (ratio) Ratio of LF over HF
sD1 (ms) Standard deviation of points perpendicular to the axis of line of identity or the successive intervals scaled by + /% \/ Lvar®RRn - Ry 1)
Non-Linear Parameters sD2 (ms) Standard deviation of points along the axis of line of identity, or /25 DNN2 = 15 D12
SD1/SD2 (ratio) Ratio of SD1 over SD2

1.3. Prediction of CVDs with HRV; State of the Art

The number of studies on CVDs detection using HRV parameters is increasing rapidly. Researchers are using dif-

ferent AI models to analyze various HRV parameters, and Al has proven its efficiency and accuracy in this domain.
For example, in[6], the authors used the Fast Fourier Transform (FFT) with the Blackman Harris window algorithm
to build a model that analyzes various HRV features to predict the occurrence of Ventricular Tachycardia (VT) in the
short term. In addition, the authors developed an Artificial Neural Networks (ANN) classifier in [7] and trained it
with the "PhysioNet Spontaneous Ventricular Tachyarrhythmia Database” [8] to predict the occurrence of VT. They
measured performance using several metrics, recording 76.60% 82.9% and 71.4% for accuracy, sensitivity, and speci-
ficity, respectively. In addition, the authors in [9] used Multilayer Perceptron (MLP), Radial Basis Function (RBF),
and Support Vector Machines (SVM) to predict cardiovascular risk. Their best model achieved 96.67% accuracy. In
addition, the authors in [10] used SVM to develop a predictive model to predict cardiovascular risk after Myocardial
Infarction, and their model accuracy was 89%.
Moreover, the authors of [11] created models to predict Sudden Cardiac Death (SCD) using the k-Nearest Neigh-
bor and Multilayer Perceptron Neural Network (MLP) algorithms. They trained their models using the "PhysioNet
Sudden Cardiac Death Holter database” [12] and the “PhysioNet Normal Sinus Rhythm database” [13], and their
recorded performance measures were 99.73%, 96.52%, 90.37%, and 83.96% accuracy for the first, second, third, and
fourth one-minute intervals, respectively. Furthermore, in [14], the authors did the same with SVM and Probabilistic
Neural Network (PNN) to predict SCD two minutes before its onset. Similarly, the authors trained their models using
the ”PhysioNet Sudden Cardiac Death (SCD) Holter database” [12] and the "PhysioNet MIT Normal Sinus Rhythm
database” [13] and SVM and PNN recorded prediction rates of 96.36% and 93.64%, respectively.
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On the other hand, in [15], the authors targeted hypertensive patients and developed novel SVM, Tree-Based Classifier,
Artificial Neural Network and Random Forest models to create an automated cardiovascular risk stratification model.
The authors trained their data using the ”Smart Health for Assessing the Risk of Events via ECG database” [16] and
achieved a sensitivity of 71.4% and a specificity of 87.8%. Furthermore, in [17], the authors developed an Artificial
Neural Networks model that analyzes respiratory rate in addition to HRV features to detect Ventricular Tachycardia
one hour before its onset. The performance metrics of their model were 88%, 82%, and 93% for sensitivity, specificity,
and area under the curve, respectively. In addition, the authors in [18] used a statistical model called MIL, to predict
CVDs based on features of heart rate variability. Their model achieved high accuracy, as they mentioned. Finally,
in [19], the authors created K Nearest Neighbor (k-NN), Decision Tree, Naive Bayes, Logistic Regression, Support
Vector Machine, Neural Network, and Vote and trained them with the "UCI Heart Diseases Repository” [20]. The
models created were able to predict CVDs with 87.4% accuracy.

In this article, several artificial intelligence models were created to predict Cardiovascular Diseases and events. The
models used are: Support Vector Machine (SVM), Deep Neural Networks (DNN), XGBoost, and Neural Oblivious
Decision Ensembles (NODE). Section 2 below explains the dataset used in this study and the preprocessing steps used
to prepare the data for the models. Section 3 explains the models created and the results obtained with these models
are listed and discussed in Section 4.

2. Materials & Methods
2.1. Dataset

The dataset used in this study is the "PhysioNet Smart Health for Assessing the Risk of Events via ECG Database”
(SHAREEDB) [16] that is offered by the PhysioNet online data repository. This dataset was collected to investigate
the efficiency of classifying hypertensive patients at higher risk for cardiac and cerebrovascular events using heart
rate variability characteristics. It consists of 139 records of 24-hour Electrocardiographic (ECG) Holter recordings.
Each recording contains three ECG signals sampled at a rate of 128 samples per second with a precision of 8 bits.
The population in which the data were collected consisted of 49 women and 90 men aged 55 years and older. They
were followed up for 12 months to record the occurrence of serious cardiovascular and cerebrovascular events such as
Coronary Revascularization, fatal or nonfatal Acute Coronary Syndromes, syncopal events, Myocardial Infarctions,
fatal or nonfatal strokes, and Transient Ischemic Attacks. During the follow-up period, 17 patients experienced a
cardiovascular event, including 11 Myocardial Infarctions, 3 strokes, and 3 syncopal events. In addition, the dataset
contains some demographic and clinical information about the subjects, such as their age, sex, any vascular events,
values of systolic and diastolic arterial pressure, and others.

2.2. Data Filtering & Preprocessing
The ECG signals provided by the SHAREEDB dataset are collected in laboratories and may be susceptible to a
lot of noise that needs to be removed before the data is passed to the Al models. It is very important to clean the data
and remove the noise to obtain high-quality ECG signals that are then analyzed by the models. The data cleaning and
preparation steps used in this study are summarized below:
¢ Filtering & Artifacts Removal [21]: ECG recordings are susceptible to noise or interference from various
signals, which can be divided into high and low-frequency noise sources. For example, noise can be caused by
electrode interference, muscle motion interference, channel interference, baseline drift, or power line interfer-
ence. Therefore, ECG signals can be cleaned by using the following filters:
— IIR Notch Filters: remove motion artifacts and/or power line interference
— FIR Filters: clean ECG data and are act on the range of ECG data that is between 1 and 100 hertz
¢ R Peaks Detection [22,23]: The ECG signal reflects the electrical activity of the myocardium and is divided into
three distinct parts: the P wave, the QRS complex, and the T wave. However, the QRS complex is composed
of Q-wave, R-wave and S-wave. The R-peak is the interval between the onset of the QRS complex and the
peak of the R-wave and can be determined using various algorithms such as Hamilton, Christov, Engelse and
Zeelenberg, Pan and Tompkins, Stationary Wavelet Transform and Two Moving Average. According to the
results in [23], Engelse and Zeelenberg provided the best results in detecting R-peaks, which is why they were
used in this study
e Calculation of RR Intervals: Heart Rate Variability is defined as the RR intervals or the difference between
two consecutive R peaks, which are then calculated using the required equations
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e Outliers Removal: After the RR intervals are detected, the outliers, defined as points that are extremely far
from the mean, are removed and replaced with the mean value

o Extract HRYV features: Finally, the HRV features were calculated using the appropriate mathematical formulas.
In this study, 26 HRV features were calculated, and despite the high number of features calculated, the use of
all features gave good results

2.3. Artificial Intelligence Models

Cardiology is defined as the healthcare sector that takes care of heart health, and the use of Al in this field is
growing briskly. Al has demonstrated high accuracy and efficiency in detecting CVDs, and sometimes it can go
beyond professional diagnosis and even be used in predicting cardiovascular diseases instead of detecting them due
to its high ability to analyze cardiac data [24,25]. In addition, Al is known for its various branches that are used in
different areas of life around the world. For example, Machine Learning, Ensemble Learning and Deep Convolutional
Neural Networks are Al branches that were used in this study:

e Classical Machine Learning Algorithms[26]: are algorithms that give computers learning potential by training
them with experimental data and generating models based on these data, enabling them to make decisions in
new situations such as: Support Vector Machines, Naive Bayes, Logistic and Linear Regression and others.

¢ Ensemble Learning [27]: is a special branch of ML where its algorithms are based on merging predictions from
different models. Some of these models are XGBoost, AdaBoost, GradientBoosting, LightGBM and others.

e Deep Convolutional Neural Network (DCNNs) [26]: are a type of Neural Networks that are used to analyze
data with a grid-like structure. However, these networks are intended for analyzing multidimensional data such
as images and videos. Using these networks to analyze tabular data may require transforming the data used.
Nevertheless, there are several models that offer transformation of tabular data for use in DCNNSs, such as Tab-
Net, GrowNet, TreeEnsemble Layers, TabTransformers, Self Normalizing Neural Networks, Neural Oblivious
Decision Ensembles (NODE), Autolnt, and Deep & Cross Neural Networks (DCNs) [28].

3. Construction of AI Models

In this study, different Al models were used to analyze HRV features to detect heart diseases and events. However,
before passing the extracted features to the models, some data fitting steps should be performed, as explained below.

3.1. Data Adjustment
Considering that of the study population, 139 patients, only 17 developed a cardiovascular event in the 12-month
follow up period, the extracted HRV features show an unbalanced identity, with the majority falling into the “no
cardiovascular event” class. Because the proportion of this class is 122 of 139, the performance of the prediction
models may be negatively affected, suggesting the application of some data adjustments such as balancing and scaling:
e Synthetic Minority Over-sampling Technique (SMOTE): a data expansion in which new samples are drawn
from existing ones to oversample the minority class
e Preprocessing Standard Scaling: the standardization of characteristics is achieved by removing the mean of
the data and scaling it to a unit variance

3.2. Building the Models; hyperparameters to be considered

After applying the necessary data fitting steps to the extracted HRV features, they are then passed to the models
created for fitting with the thresholds listed below:

3.2.1. Classical ML: Support Vector Machines
SVM is a supervised Machine Learning algorithm that is fed labeled training data to learn how to assign labels to
objects based on examples, and then gain the ability to predict the category of new example(s) [26]. The performance
of the SVM model is affected by the following hyperparameters [29]:
Kernel: the function that converts the input data into the required form
e Regularization: denotes the misclassification or error term and is expressed as hyperparameter "C”.
e gamma: interpret how far the effect of a single training sample extends
o class weight: used for imbalanced datasets and defines the weight of the classes to be predicted
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3.2.2. Deep Learning: Deep Neural Networks
These networks are algorithms that mimic human brain cells called neurons. In general, these networks use brain

simulations to improve their learning and increase the accuracy of the models. The structure of DNNs consists of more
than two interconnected layers and is affected by the following hyperparameters [30]:

e Number of layers: input, output, and the hidden layers that define the structure of the network.

o Units: denotes the output of each layer.
Activation function: also known as the “transfer function”, which defines how the weighted sum of the input
is converted into an output from one or more nodes in a layer of the network
Number of epochs: a complete pass through all rows of the training data
Batch size: samples that the model examines within each epoch before updating the weights.
Learning rates: a variable that controls how the optimizer’s learning rate changes over time
Momentum: is the ’delay” in learning the mean and variance

3.2.3. Ensemble Learning Algorithms: XGBoost
XGBoost is an Ensemble Learning algorithm that also belongs also to the Machine Learning Al Branch.
¢ XGBoost [31]: eXtreme Gradient Boosting package is a scalable implementation of the gradient boosting
framework built with an efficient linear model solver and a tree learning algorithm with hyperparameters:
— Booster: the type of model to run at each iteration
Learning Rate: is the step size shrinkage used during the update to prevent overfitting
Gamma: specifies the minimum loss reduction required to perform splitting
Max Depth: the parameter used to control overfitting
Min Child Weight: defines the minimum sum of weights of all observations required in a child
Max Delta Step: helps to make the update step more conservative
Sub Sample: denotes the fraction of observations that are randomly selected for each tree
— Lambdas: is used to handle the regularization part
— Alphat:is used in case of very high dimensionality to make the algorithm run faster during implementation
— Tree Method: Algorithm for tree construction
— Scale Weight: controls the balance of positive and negative weights
— Objective: defines the loss function to be minimized

3.2.4. Deep Convolutional Neural Networks: Neural Oblivious Decision Ensembles
In this study, the following model was used to apply DCNN to the SHAREEDB tabular data:

e Neural Oblivious Decision Ensembles (NODE)[32]: a model with a layered structure built from differentiable
oblivious trees, which are decision tables that decompose the data along dd-splitting features and compare each
feature to a learned threshold. It was trained in an end-to-end manner using backpropagation and is affected by
the following hyperparameters:

— Number of Layers: Number of layers forming the Neural Network

— Number of Trees: Number of trees in each layer

— Depth: Depth of the tree

— Learning Rate: is the shrinkage step size used in the update to prevent overfitting.

3.3. Wrapping Up, Training, Prediction, and Optimization

Once the models were created, they were trained with the fitted version of the extracted HRV features. The obtained
results are explained and discussed in detail in Section 4. Figure 1 shows the overall architecture of the data preparation
steps and the models created in this study.

4. Results & Discussion

The created models were trained with the HRV features. The SVM, DNN, XGBoost, and NODE models were
evaluated with the metrics of Accuracy, Precision, Recall, Specificity, Negative Predictive Value NPV, and F1 Score.
For better measurement, Repeated K-fold Cross Validation [33] was implemented with 10 folds and repeated 5 times.
The results are shown in Table 2 below, and the values of accuracy, precision, recall, specificity, negative predictive
value, and F1 score are denoted as AC, PR, RE, SP, NPV, and F1 , respectively. In addition, the values of the hyperpa-
rameters used are listed in the table. Figure 2 below also shows a graphical representation of the performance of the
models created in this study.
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Table 2. AI Models Evaluation Metrics.

Model Hyper Parameters Evaluation Metrics
Parameter Value AC PR RE SP NPV F1
Traming(Testing) 0.75(0.25)
Kernel rbf
SVM Regularization(C) 2.66 91.80% 87.87% 96.66% 87.09% 96.42% 92.06%
Gamma 0.141
Training(Testing) 0.79(0.21)
Layers Input/3 Hidden/Output
Units 512/256/128/64/1
Activation Function tanh/tanh/tanh/sigmoid
Dropout Before Output Layer 0.2
DNN Optimizer SGD 90.19% 85.18% 95.83% 85.18% 95.83% 90.19%
Epochs 6850
Batch Size 250
Learning Rate 0.005
Momentum default
Training(Testing) 0.79(0.21)
Booster gbtree
Learning Rate 0.01
Gamma 0.1
Maximum Depth 10
XGBoost Minimum Child Weight 0.01 89.10% 86.00% 93.80% 85.10% 92.50% 89.10%
Max Delta Step 0
Sub Sample 0.75
Lambda 1
Alpa 0.01
Tree Method Auto
Training(Testing) 0.71(0.29)
Number of Layers 5
Depth 10
NODE Number of Trees 1 76.92% 77.77% 73.68% 80% 76.19% 75.67%
Learning Rate 0.1
Batch Size 26

4.1. Discussion

In this study, several models were created
to analyze HRV characteristics to detect car-
diovascular risks. The results obtained demon-
strate the high efficiency of Al models in pre-
dicting cardiovascular disease. However, the
results obtained in this study outperformed pre-
vious implementations.

First, the authors in [15]applied similar mod-
els to the same dataset. Nevertheless, the re-
sults obtained in this study exceeded their re-
sults. For example, their SVM model recorded
accuracy, recall and specificity results were
89.00%, 86.30% and 91.80% respectively,
whereas our results are 91.80%, 96.66% and
87.09% for the same performance metrics. In

a) SVM Area Under Curve

c) XGBoost Area Under Curve c) NODE Training/Validation Loss Graphs

Fig. 2. Models Performance Graphical Representation

addition, the performance metrics of their Multi Layer Perceptron (MLP) model were Accuracy: 78.10%, Recall:
86.30%, Specificity: 69.90% and our model recorded 90.19%, 95.83% and 85.18% for the same metrics.
In addition, our SVM model achieved 91.80% accuracy, the highest performance among all previous implementations.
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For example, the SVM models in [9] recorded an accuracy of 88.64%, 82.95% and 82.58% for the Linear, Polyno-
mial and RBF kernels, respectively. Moreover, the accuracy of SVM in [10,15,19] was 79.81%, 89.00% and 85.19%,
respectively. Even though the accuracy is close, other metrics such as Precision and Recall clearly outperform the
previous results by a large margin. Knowing that Recall measures how a model correctly classifies True Positives, the
models presented in this study are more accurate in predicting whether a person will have a cardiovascular disease in
future. The high recall for SVM, DNN, and XGBoost, which are 96.66%, 95.83% and 93.80%, respectively, reflects
the highest ability of all implementations to correctly predict that a person is in the cardiovascular risk zone.
Likewise, the DNN model presented in this article also outperforms all previous implementations. The accuracy of
this model is 90.19%, whereas the multilayer perceptron in [9,15] is 86.67% and 78.10%, and the accuracy of artifi-
cial neural networks in [7,17] is 76.60% and 85.30%. Moreover, precision and recall are significantly higher than the
previous implementations, which also reflects a higher capability in cardiovascular risk detection. Table 3 provides a
detailed comparison between the results of the models presented in this article and the previous implementations. The
sybmoles of the performance metrics used in this table are similar to those in Table 2, and a "NA” symbol indicates
that the corresponding metric was not mentioned in the associated study.

On the other hand, none of the previous implementations used XGBoost , which also outperformed the previous imple-
mentations with an accuracy of 98.10% and a recall of 94.60%, reflecting high efficiency in predicting cardiovascular
risk, in contrast to the implementation of NODE, which achieved an accuracy of 76.92%, which is not comparable
with the previous implementations.

Finally, the SVM, DNN, and XGBoost models discussed in this study can be considered the most accurate models for
predicting cardiac disease and events. Even the implementations in [11,14] had higher accuracy and relatively higher
recall, but their models were developed to detect sudden cardiac death (SCD) only minutes before its occurrence.
For example, the model mentioned in [11] achieved 99.73% accuracy in predicting sudden cardiac death one minute
before its onset, but the performance drops to 83.93% when the event is predicted four minutes before its occurrence.
However, the models presented here are able to predict cardiovascular disease 12 months before its onset, demon-
strating high efficiency in predicting cardiovascular disease and cardiac events long before their onset, thus increasing
confidence in the use of Al in detecting and predicting cardiac disease and related events.

Table 3. Comparison with Previous Implementations.

Study Model AC PR RE sp NPV F1
Support Vector Machines 91.80% 87.87% 96.66% 87.09% 96.42% 92.06%
DNN 90.19% 85.18% 95.83% 85.18% 95.83% 90.19%
Our Study XGBoost 89.10% 86.00% 93.80% 85.10% 92.50% 89.10%
NODE 76.92% 77.77% 73.68% 80.00% 76.00% 75.67%
[71 Artificial Neural Network 76.60% 70.70% 82.90% 71.40% NA NA
Support Vector Machines (Linear Kernel) 88.64% 90.84% 86.36% 90.91% 86.96% NA
91 Support Vector Machines (Polynomial Kernel) 82.95% 80.85% 79.55% 86.36% 85.37% NA
Support Vector Machines (RBF Kernel) 82.58% 79.45% 77.27% 87.88% 86.44% NA
Multi Layer Perceptron (Top 15 Features) 86.67% 100% 73.33% 100% 78.95% NA
[10] Support Vector Machines 79.81% 21.15% 91.67% 79.08% 99.36% NA
MLP (A Minute Before the SCD Event) 99.73% NA NA NA NA NA
(i K-NN (A Minute Before the SCD Event) 98.32% NA NA NA NA NA
SVM (2 minutes before VF Event) 96.36% NA NA NA NA NA
14 Penalized Neural Network 93.64% NA NA NA NA NA
B Support Vector Machines 89.00% NA 86.30% 91.80% NA NA
ts] Multi Layer Perceptron 78.10% NA 86.30% 69.90% NA NA
[17] Artificial Neural Network 85.30% 83.30% 88.20% 82.40% 87.50% NA
[18] MIL Statisitcs Algorithm 85.47% 92.11% 86.42% 83.33% NA NA
Vote 87.41% NA NA NA NA NA
[19] Naive Bayes 84.81% NA NA NA NA NA
Support Vector Machines 85.19% NA NA NA NA NA

5. Conclusion

Al will one day be destiny, some have said. But what we are witnessing today through the use of these technologies
in many areas of life confirms that they have become a reality and that their use is increasing day by day. Moreover,
Al is expected to evolve the concepts of cardiology and the mechanisms to diagnose its diseases, and even use them
to predict the occurrence of these diseases in the future. In this study, we have presented a group of models capable
of predicting the occurrence of heart diseases or events with high accuracy, which increases the confidence in Al and
its branches in the health field. Furthermore, adapting these models to work in real time will certainly help create
personalized and continuous monitoring that can be used to track patients’ heart health or even monitor the health of
workers who work in stressful environments or for extremely long periods of time.
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