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Abstract 

Influence of anthropogenic disturbances on the movements of woodland caribou 

(Rangifer tarandus caribou) across multiple spatiotemporal scales  

in the boreal forest 

David Beauchesne 

 

As human encroachment in natural habitats increases ubiquitously, understanding 

its impacts on wildlife is crucial. We investigated the impacts of anthropogenic 

disturbances (i.e. clearcuts and roads) on the movements of the woodland caribou, a 

threatened species inhabiting the highly managed southern fringe of the boreal forest. We 

used GPS telemetry data from 49 females followed between 2004 and 2010 in the 

Saguenay-Lac-Saint-Jean region (Québec, Canada). Space use was evaluated at a coarser 

scale using individual home-range size as a function of observed disturbance levels 

within home ranges. Individuals first expanded their home ranges alongside increases in 

disturbance levels, yet subsequently shifted their behaviour when certain disturbance 

thresholds were exceeded by contracting home ranges and potentially trapping 

individuals in sub-optimal habitats. Fine-scale movements were investigated using a use-

availability design contrasting observed and random steps (i.e. straight-line segment 

between successive locations). Individuals, although mostly avoiding disturbances, 

nonetheless regularly came in close contact with them. As a consequence, females 

modulated their movements daily and annually, avoiding disturbances predominantly 

during periods of higher vulnerability (i.e. calving, early and winter) during the day, 

while using them in periods of higher energy requirements (i.e. spring, summer and rut) 
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during dusk/dawn and at night. Additionally, individuals altered their behaviour 

depending on the context in which they were moving, either relocating or remaining in 

altered habitats as disturbance levels increased. Our results suggest that current 

disturbance levels observed in the boreal forest cause behavioural shifts that may compel 

females to use suboptimal habitats, likely threatening the persistence of woodland caribou 

populations in North-American forests.  
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Chapter 1. Introduction 

The current worldwide rate of biodiversity loss can be mainly attributed to over-

exploitation of wildlife populations, introduction of invasive species, diseases, climate 

change and anthropogenic disturbances, mainly through habitat alteration, resource 

exploitation, and human settlement (White et al. 2009). Public concern is now focused on 

human impacts on wildlife, of which habitat loss and fragmentation are predominant 

factors affecting biodiversity loss (Fahrig 1997, 2003). Conservation strategies are 

therefore needed in order to offset such impacts on animal populations. Threatened 

species however often inhabit environments of economic interest (e.g. forest harvesting 

and mining; Seip 1998) and conservation strategies in such areas should ideally be 

economically viable while still benefiting the overall ecology of the system. The North 

American boreal forest is currently faced with this issue due to forest-harvesting targeting 

undisturbed forest, with which many species are strongly associated (e.g. Burton et al. 

1999; McRae et al. 2001; Courtois et al. 2007a).  

 A sustainable forest management approach has recently been proposed for species 

found in the boreal forest in an effort to combine forest harvesting alongside conservation 

strategies for multiple wildlife species (Seip 1998; Courtois et al. 2003a). This ecosystem 

approach aims at managing the ecosystem using silvicultural techniques emulating an 

ecosystem’s dominant natural disturbance regimes (e.g. forest fires and insect outbreaks; 

McRae et al. 2001; Hebert et al. 2003; Fenton et al. 2009). The approach acts at a coarse-

filter level through strategies aiming to retain the overall landscape structure and 

vegetation diversity within forest stands. It also further aims at preserving diversity of 

forest stands at the landscape level, in the same manner as would be expected under a 
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natural disturbance regime. These actions could thus potentially enable the conservation 

of species associated with undisturbed forest (Noss 1987; Hebert et al. 2003). A fine-

filter level also exists, with the focus centered on the requirements of indicator species 

(e.g. species characteristic of environmental conditions found in a given system) that are 

threatened or of some cultural importance (Noss 1983, 1987). Additionally, species with 

extensive habitat ranges are interesting targets for such a management strategy, since 

protecting their habitat could potentially protect the habitat of other species (i.e. umbrella 

species; Simberloff 1998) and many are being targeted for fine-filter conservation 

strategies, e.g. trumpeter swan (Cygnus buccinator) and woodland caribou (Rangifer 

tarandus caribou) in Alberta (Dyer 2004).   

Conservation strategies focusing on a particular species require a thorough 

understanding of the species’ population dynamics (Hebert et al. 2003). Since 

anthropogenic disturbances vary spatiotemporally and induce responses that are scale-

specific, knowledge on the species must also cover different spatiotemporal scales. The 

Biological Scales of Impacts (Figure 1.1; Johnson and St-Laurent 2011) is a useful 

framework for understanding the impacts of anthropogenic development on wildlife 

through spatiotemporal and biological scales. Impacts on animal populations should be 

primarily perceived at the individual level through modifications in behaviour (e.g. 

avoidance of disturbed areas) and be followed by increases in energy expenditure as 

organisms modify their movement patterns (Johnson et al. 2002). Forage intake could 

then be reduced due to these behavioural changes and decreases in body condition might 

follow (Chan-McLeod et al. 1999), potentially leading to community-level alterations by 

decreasing survival and reproduction rates of organisms (Johnson and St-Laurent 2011). 
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Large-scale population dynamics could thus be affected by variations in individual 

interactions with their environment at finer spatiotemporal scale. Understanding the 

Biological Scales of Impacts is crucial when studying how individuals and populations 

are affected by modifications of their environment.  

 

Figure 1.1 – Biological Scales of Impacts (from Johnson and St-Laurent 2011) 

 

The threatened populations of woodland caribou in North-America offer a good 

opportunity to study multi-scale impacts of a highly managed boreal forest (mainly 

through forest harvesting activities) on wildlife behaviour. Traditionally evolving in the 

boreal forest under a natural disturbance regime dominated by fires, windthrows and 

insect outbreaks (Hins et al. 2009), caribou range suffered severe constrictions as a result 

of clearing for forest products and agriculture.  Many remnant populations are now 

inhabiting areas with intensive forest harvesting while declining throughout the majority 

of the sub-species’ range (Vors and Boyce 2009). Defining specific management 
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strategies is therefore an important challenge in order to ensure the future persistence of 

woodland caribou in the boreal forest (Courtois et al. 2003a). A lot of research has been 

conducted on the broad-scale effects of anthropogenic disturbances on woodland caribou 

population dynamics (e.g. Sorensen et al. 2008; Vors and Boyce 2009), although 

knowledge is still lacking in order to accurately predict the impacts of harvesting 

practices on populations (Sleep and Loehle 2010). There is also an increasing amount of 

literature available on fine-scale behavioural responses to habitat alteration and 

disturbance (e.g. Dyer et al. 2002; Gustine 2005; Faille et al. 2010).  

Although past studies are informative, our understanding of ungulate behaviour 

(in general) and caribou response (in particular) to heterogeneous landscapes is still 

incomplete. Many habitat selection studies have been conducted using Resource 

Selection Function (RSF) analyses (e.g. Fortin et al. 2008; Courbin et al. 2009), defining 

habitat availability as the amount of resource accessible to the organisms while building 

on the assumption that the whole landscape under study is accessible to individuals 

(Manly et al. 2002). Nevertheless, disturbances can modify habitat accessibility and 

connectivity, both related to the movements of individual animals (Jaeger 2007; 

Eigenbrod et al. 2008); often, these parameters are not taken into account in RSF 

analyses (but see Johnson et al. 2002).  

While providing useful information on individual landscape and habitat use, the 

study of habitat selection provides little insights on the underlying processes, (but see 

Dyer et al. 2002; Laurian et al. 2008 for examples). The distributional patterns observed 

in habitat selection studies are a result of individual movements (Dyer et al. 2002, 

Fauchald and Tverra 2003) and it is therefore important to improve our understanding of 
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how organisms move through their habitat in order to fully understand their behaviour 

and guide our management and conservation strategies. St-Laurent et al. (2009) 

demonstrated that landscape features such as roads and watercourses can be important 

variables when analyzing wildlife response to habitat alteration. Accordingly, studies 

conducted on wildlife habitat use in heterogeneous landscapes have found that static 

features (e.g. roads) can affect movement behaviour such as the speed of travel, tortuosity 

and clustering of movement by acting as barriers (e.g. Turchin 1998; Dyer et al. 2002; 

Coulon et al. 2008). Furthermore, the presence of linear features can facilitate 

movements for alternative prey species, predators, and humans, thus augmenting caribou 

vulnerability via increased encounter probabilities with predators (Bergerud et al. 1984; 

Bergerud 1985; Dyer et al. 2002). Conversely, certain natural barriers such as water 

bodies and high elevations can be used by caribou to decrease encounter probabilities 

with predators as they are often avoided by those species (Bergerud et al. 1984; Bergerud 

1985).  

How woodland caribou move in the landscape in relation to different disturbance 

types will ultimately dictate how they use their habitat. Studying animal movements 

should provide a more thorough understanding of their responses to habitat alterations 

and are expected to provide additional guidelines for management strategies. 

Furthermore, potential thresholds to the amount and configuration of different barrier 

types tolerable by woodland caribou could provide key values to implement in those 

strategies. 
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Chapter 2. Literature review 

2.1 Woodland caribou 

The woodland caribou found in North-America is one of the eight sub-species of 

the circumpolar European reindeer and the North-American caribou (Rangifer tarandus), 

which was traditionally divided into distinct ecotypes defined as a population or group of 

populations that evolved different mechanisms to deal with different environments and 

limiting factors (Courtois et al. 2003b; COSEWIC 2011), albeit being part of the same 

species. The woodland caribou (hereafter caribou) evolving in the boreal forest is 

distributed discontinuously principally south of the 52
nd

 parallel; in Québec, it can be 

found between the 49
th

 and 55
th

 parallel. This ecotype lives at low densities (1 to 3 

individuals / 100 km
2
) and only undertakes short migrations (< 50 km) (Courtois et al. 

2003b). It is also closely associated with old-growth forest (Schaefer 2003; Hins et al. 

2009). The caribou has received much attention in contemporary literature due to its 

vulnerability, with most of the monitored populations declining over the last few decades 

(Rettie and Messier 1998; Vors and Boyce 2009; Festa-Bianchet et al. 2011). It is also 

confronted with a high number of limiting factors in its environment (e.g., predation and 

anthropogenic disturbance; Mallory and Hillis 1998). The woodland caribou has thus 

been attributed the status of threatened species in Canada in 2002 (COSEWIC 2011) and 

vulnerable species in Québec in 2005 (MRNF 2010). Furthermore, the boreal caribou, 

which comprises the woodland caribou described above, has recently been added as 1 of 

the 12 Designatable Unit of significance in North-America (COSEWIC 2011) 

Multiple hypotheses have been suggested since the middle of the 20
th

 century to 

explain observed caribou population declines: over-harvesting and poaching (Bergerud 
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1974), increased predation (Bergerud 1974; Seip 1991, 1992), transmission of diseases 

(Bergerud 1985) and anthropogenic disturbances, essentially human settlement and 

forestry activities (McLoughlin et al. 2003; Schaefer 2003). The traditional range 

occupied by woodland caribou has gone through major alterations (Schaefer 2003; Vors 

et al. 2007; Vors and Boyce 2009; Festa-Bianchet et al. 2011). For instance, the range of 

woodland caribou in Ontario has been halved over the last century with an approximate 

regression rate of 34 km per decade since 1880, which is closely related to human 

settlement and forest harvesting (Bergerud 1974; Schaefer 2003; Vors et al. 2007). Those 

activities have led to the loss and fragmentation of old-growth forest inhabited by 

woodland caribou, and an important proportion of their range in North America is still 

located in actively harvested ecosystems (Shaefer 2003; Vors et al. 2007; Hins et al. 

2009). Although other species’ range regressions can be attributed to global climate 

change (e.g. birds and butterflies; Schaefer 2003), the rate of caribou population 

extirpation is much faster than what climate change has induced in other species. Climate 

change is thus unlikely to represent a major factor contributing to observed caribou range 

regression (Vors et al. 2007; Vors and Boyce 2009; Festa-Bianchet et al. 2011).  

Predation is acknowledged as the most important limiting factor affecting caribou 

populations, especially from wolves (Canis lupus) and bears (Ursus spp.; Bergerud and 

Page 1987; Seip 1991; Serrouya and Wittmer 2010). Because caribou are especially 

vulnerable to predation and have low reproductive productivity compared to other 

ungulates (Bergerud 1974), they use an anti-predation strategy that consists of using 

habitats that are less frequented by predators, alternative prey species, and conspecifics 

(spacing out strategy; Bergerud and Page 1987; Seip 1991, 1992). This strategy renders 
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them more inconspicuous to predators, which lowers predation rates and enables caribou 

to survive at low densities throughout the boreal forest (Bergerud and Page 1987; Seip, 

1992; Ferguson and Elkie 2004). This anti-predation strategy is however rendered less 

effective in areas where predators are sustained by alternative prey species (e.g. moose 

Alces alces and deer Odocoileus spp.; Seip 1992). Species like moose and deer, 

historically absent from caribou range, are more productive and can sustain wolf 

populations at higher densities. This naturally places caribou in apparent competition 

with these alternative prey species (Seip 1991, 1992). Human-made disturbances have 

however exacerbated this natural process by increasing the spatiotemporal overlap 

between caribou and those species by increasing the amount of young forest stands in the 

boreal forest so that an increasing part of caribou range is now located in multi-prey 

environments (Harrington et al. 1999; Vors and Boyce 2009). Accordingly, clearcuts 

have been found to be a good predictor of woodland caribou extirpation. For example, 

Vors et al. (2007) showed that caribou in Ontario are avoiding cutovers and that 

extirpation usually occurs ~20 years following forest harvesting, a time lag associated 

with the necessary amount of time for moose densities to increase. Furthermore, bears are 

also attracted by recently harvested sites because of the abundance of berries found in 

regenerating habitats, increasing the encounter probabilities with caribou and 

opportunistic predation, especially on calves (Gustine et al. 2006; Bastille-Rousseau et al. 

2011). Depensatory predation thus arises, with predators unaffected by decreases in 

caribou density due to alternate food sources (Bergerud 1985; Seip 1991, 1992; Rettie 

and Messier 2000), closely linking anthropogenic disturbances to modifications in 

predator-prey dynamics (Hebblewhite 2008). 
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In order to get as much nutrient intake as possible in critical periods, population 

dynamics of caribou is also strongly cued to plant phenology (Vors and Boyce 2009). 

This is especially important for parturient females during spring and early summer when 

they are at their lowest body condition of the year and lactation requires a lot of energy 

(Chan-McLeod et al. 1999; Barten et al. 2001). By spacing out, woodland caribou are 

able to decrease predation risk, albeit at the price of lowered forage quality and increased 

uncertainty associated with open habitats (Sih 1992; Barten et al. 2001). Since both 

forage and protection from predation are important for caribou, a trade-off decision is 

expected between predator avoidance and use of habitats with higher forage quality in an 

effort to optimize both factors simultaneously (Barten et al. 2001; Gustine 2005).  

 

2.2 Landscape fragmentation and habitat fragmentation  

Landscape fragmentation has been a subject of growing interest for a few decades 

and there are now multiple definitions and methods used to describe it (see Fahrig 2003 

for a review). Landscape fragmentation can be defined as the presence of obstacles 

against the movement of organisms (functional) and as a disruption of ecological 

interrelations between different locations (structural; Chetkiewicz et al. 2006). These 

definitions highlight the fact that landscape structure is composed of different land cover 

types (determining landscape composition) along with a certain spatial arrangement of 

those types (landscape configuration). Landscape fragmentation can be anthropogenic 

(e.g. roads and urban areas), but it can also be natural, or geogenic (e.g. rivers and fires; 

Jaeger 2000). Landscape fragmentation and habitat fragmentation are two closely linked 

but separate notions that need to be discerned. Since habitat is species-specific (Hall et al. 
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1997), organisms’ responses to disturbances will be species-specific as well, so that loss 

and fragmentation of habitat for a particular species can on the contrary imply an increase 

in habitat connectivity for another species (Fischer and Lindenmayer 2007). Landscape 

fragmentation, on the other hand, is concerned with the cumulative amount of 

disturbances impacting a particular geographic area, regardless of any particular living 

organism (Chetkiewicz et al. 2006).  

Habitat loss and fragmentation are also closely linked. Their respective influence 

on wildlife can vary both in direction and intensity, and managing them independently is 

possible to some extent (Smith et al. 2009). The fact that they are closely linked however 

renders their distinction challenging when conducting spatial analyses. Habitat loss 

results in an overall decrease in a particular habitat’s original representation in the 

landscape, combined with the increase of another habitat type (i.e. change in landscape 

composition; St-Laurent et al. 2009). Habitat fragmentation per se is defined as “the 

breaking apart of habitat after controlling for habitat loss” (i.e. landscape configuration; 

Fahrig 2003). There have been attempts to partition the effects of loss and fragmentation 

using different statistical tools such as classical variance partitioning (Barbaro et al. 

2007), hierarchical variance partitioning (Radford and Bennett 2007), residual regression 

(Debuse et al. 2007), multimodel inference using summed AIC weights and averaged 

coefficients (Yates and Muzika 2006), and traditional variable selection (Reunanen et al. 

2002). However, these approaches have so far been found to include biases associated 

with the methods used, which makes it difficult to compare results (see Smith et al. 2009 

for a review of methods). For example, certain types of analysis frequently cause an 

underestimation of suppressor variables (i.e. variables with conflicting or inverse effects; 
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Smith et al. 2009). The distinction between habitat loss and fragmentation can become 

quite important, because of their respective influence on wildlife, and their distinction can 

also be essential for landscape planners, especially when considering the management of 

threatened species (Smith et al. 2009; St-Laurent et al. 2009). Nonetheless, there is no 

acknowledged method to solve this problem, but the subject is an ongoing discussion in 

the literature.   

For the purpose of this study, habitat fragmentation will be defined as the 

reduction of connectivity within a landscape (With et al. 1997; Jaeger 2007). Landscape 

connectivity refers to “the degree to which landscape facilitates or impedes movement 

among resource patches” (Taylor et al. 1997). Since the concept of connectivity is scale- 

and species-specific (Tischendorf and Fahrig 2000; Jaeger 2007), landscape connectivity 

will be referred to as habitat connectivity in order to avoid any confusion, because of the 

distinction made between landscape and habitat fragmentation. Connectivity also 

highlights that barriers can exhibit a certain degree of permeability that ranges from no 

barrier effect to complete impermeability. 

  

2.3 Impacts of landscape fragmentation 

Anthropogenic disturbances such as forest harvesting and human settlement act 

cumulatively to impact wildlife (St-Laurent et al. 2009). The resulting habitat loss is 

acknowledged as having more severe impacts on population dynamics than habitat 

fragmentation per se. The influence of fragmentation seems less acute, even if 

significant, and its impacts have been reported to be both negative and positive in some 

cases (Fahrig 2003; Fischer and Lindenmayer 2007; St-Laurent et al. 2009). At the 
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population level, alteration of habitat can lead to an isolation and fragmentation of 

populations into smaller and more vulnerable subpopulations, which in turn are more 

susceptible to stochasticity and natural stress factors, increasing the probability of local 

extinction (Fahrig 2003). Landscape fragmentation can also lead to the permanent 

extirpation of populations, e.g., when recolonization of habitats is not possible (Fahrig 

1997, 2003; Jaeger and Fahrig 2004). On a finer spatiotemporal scale, physiology and 

behaviour can also be affected by landscape fragmentation. Loss of accessibility to high-

quality habitats can force organisms to use less suitable habitat or make more extensive 

movements in order to access suitable habitat (Eigenbrod et al. 2008), resulting in 

increases in energy expenditure and decreases in individual body condition (Chan-

McLeod et al. 1999). Furthermore, the evaluation of the impacts of habitat loss and 

fragmentation on wildlife can potentially be biased when habitat connectivity is not 

considered in the analyses (Eigenbrod et al. 2008). Landscape configuration and the 

organisms’ movement capacities are therefore paramount when studying the influence of 

landscape alterations on individual habitat use. 

 

2.4 Impacts of disturbances 

The presence and configuration of many static features in the landscape affect 

wildlife and may act as barriers to their movement, drastically reducing connectivity of 

habitat patches (Jaeger 2007; St-Laurent et al. 2009). This section discusses the impacts 

of natural (e.g. water bodies, topography lines, snow accumulation, fires, windthrows and 

insect outbreaks) and anthropogenic (e.g., roads, clearcuts and human settlements) barrier 
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types on wildlife, focusing mainly on caribou populations and secondarily on ungulate 

species in general where information on caribou response is not available. 

 

2.4.1 Natural disturbances 

 Woodland caribou have evolved in a dynamic ecosystem shaped by natural 

disturbances. Individuals have naturally adapted to such disturbances by mostly avoiding 

those resulting in deforestation (i.e. fires, windthrows and insect outbreaks; Gustine and 

Parker 2008; Faille et al. 2010), while taking advantage of other natural features (e.g. 

water bodies and elevation; Bergerud et al. 1984; Rettie and Messier 2000). Natural 

disturbances resulting in deforestation may impact caribou in the same manner as 

clearcuts do (Fischer and Wilkinson 2005; Brodeur et al. 2008), yet mostly in areas 

where anthropogenic disturbance levels are quite low (Faille et al. 2010). Individuals 

have been known to abandon parts of their range for up to 55 years following large 

wildfires (Schaefer and Pruitt 1991), which is roughly similar to the 60-year period of 

abandonment associated with logged areas (Courtois et al. 2007a). Even though such 

disturbances seem to redistribute caribou within their range, they do not appear to have 

population level consequences (Dalerum et al. 2007). This seems to be mainly due to 

large home ranges that allow individuals to naturally avoid those areas (Fisher and 

Wilkinson 2005).  

Some natural features of the landscape, although not considered as disturbances, 

have been found to affect wildlife movements (e.g. topography and water bodies), yet 

seem to be used by caribou. For instance, some females typically calve on islands, using 

water bodies as barriers to the movements of predators, alternative prey species, and 
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conspecifics, as part of their spacing out strategy (Bergerud 1985; Rettie and Messier 

2000). Females using high elevation calving sites in mountainous terrain also have been 

found to use topography as a way to enhance their anti-predation strategy (Bergerud et al. 

1984; Poole et al. 2000; Gustine 2005). As predators such as wolves typically move at 

low elevation valley bottoms, the use how higher elevations could enable females 

decrease risks of encounters while increasing their efficiency to detect predators 

(Bergerud et al. 1984; Coulon et al. 2008; Skarin et al. 2010). Furthermore, movement 

paths of wildlife species were found to follow the topography of the landscape (roe deer; 

Coulon et al. 2008; cougar; Dickson et al. 2005; elk; Kie et al. 2005). An individual 

moving up- or down-slope will expend more energy and following topography could be a 

more efficient movement strategy (Leblond et al. 2010). Moose preferentially use valley 

bottoms (Dussault et al. 2007; Laurian et al. 2008), making it unlikely for caribou to 

exhibit the same kind of selection due to their spacing out strategy (Gustine 2005). 

Winter snow accumulation could also affect movements as snow accumulates throughout 

the winter, eventually causing a decrease in winter home range size and a decrease in 

movement rates (Bradshaw et al. 1997; Stuart-Smith et al. 1997; Smith et al. 2000). 

  

2.4.2 Anthropogenic disturbances  

 Considering the ubiquitous increase of anthropogenic disturbances in the boreal 

forest (Cyr et al. 2009), this study primarily focused its attention on the impact of 

anthropogenic disturbances. They represent a broad category of features that may 

drastically impact wildlife populations across all biological scales, including permanent 

and temporary features as well as human activities, whether economical or recreational. 
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For this study, we decided to focus our review on the impact of permanent and temporary 

anthropogenic features found in our study area, i.e. roads and clearcuts.  

 

2.4.2.1 Roads 

The transportation infrastructure is one of the most prominent anthropogenic 

features acting as a barrier to wildlife movements (Jaeger 2007; Fahrig and Rytwinski 

2009). Primary impacts of roads on wildlife include increases in mortality through 

wildlife-vehicle collisions, reduced permeability, increases in landscape fragmentation, 

and decreases in the amount and quality of neighbouring habitats (Forman and Alexander 

1998; Spellerberg 1998; Fahrig and Rytwinski 2009). Wildlife species can also be 

impacted at the individual level through an increased avoidance of roads due to noise, 

smell, road surface and traffic (Jaeger et al. 2005; Fahrig and Rytwinski 2009). When 

individuals cannot cross roads (e.g., due to complete avoidance, road mortality or 

physical impermeability of the road), habitat on the other side of the road can be 

inaccessible and effectively lost, and populations subdivided into sub-populations with 

higher extinction probabilities (Dyer et al. 2001). 

Depending on the species, the type of road and its context, impacts of roads on 

wildlife can vary (Hebblewhite 2008). Species like caribou with a low productivity and 

extensive home ranges are more likely to be affected by the presence of roads than other 

species (Alexander and Waters 2000; Fahrig and Rytwinski 2009). Furthermore, it has 

also been discussed that the woodland caribou may be particularly vulnerable to the 

presence of roads due to their sedentary behaviour (Dyer et al. 2002). This would make it 

more difficult for individuals to avoid roads located within their home ranges (Dyer et al. 
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2002). Roads and other linear features (e.g. seismic lines) can also induce an increase in 

the interactions between humans and predators with caribou by increasing accessibility to 

different parts of the landscape. This can render the presence of caribou more predictable 

due to range constriction, effectively compromising their spacing out strategy (Dyer et al. 

2002; Hebblewhite 2008). For example, wolves have been found to use roads during 

certain periods of the year (Gurarie et al. 2011; Whittington et al. 2005, 2011; Tremblay-

Gendron 2012) 

Studies conducted so far on the impact of roads on ungulates have mainly been 

focused on road avoidance behaviour. Ungulate species typically tend to avoid areas that 

are in close proximity to roads, as the influence of roads extends beyond their immediate 

location for certain species (Dyer et al. 2002; Coulon et al. 2008; Laurian et al. 2008). 

Conversely, road crossings are observed much less often than expected by chance 

(Alexander and Waters 2000; Dyer et al. 2002; Laurian et al. 2008). For instance, 

woodland caribou were found to cross roads six times less often than expected (Dyer et 

al. 2002) and moose were found to cross highways and forestry roads respectively sixteen 

and ten times less often than expected by chance (Laurian et al. 2008). Furthermore, 

crossing rates can also differ daily and seasonally in response to certain limiting factors 

(e.g. road traffic or resource requirements; Dyer et al. 2002; Dussault et al. 2007; Laurian 

et al. 2008). It is however interesting to note that certain ungulate populations have been 

found to stay closer to roads and other anthropogenic features potentially as a way to 

avoid predation pressure (e.g. moose in Yellowstone Ecosystem, Berger 2007; elk in 

Banff National Park, Hebblewhite and Merrill 2008; elk in Yoho National Parks; Rogala 

et al. 2011). 
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2.4.2.2 Clearcuts 

Forest harvesting creates early-seral forest stands that can lead to habitat loss for 

certain species, while conversely creating preferential habitat for others. Some species do 

not respond in any particular way to harvested areas (white-tailed deer; Campbell et al. 

2004), while others, such as caribou, are more severely impacted (Chubbs et al. 1993; 

Smith et al. 2000; Schaefer and Mahoney 2007). For woodland caribou, logging results in 

habitat loss that can last up to 60 years (Courtois et al. 2007a) and creates a hostile matrix 

through the increase in densities of predators and their alternative prey (Dussault et al. 

2005; Brodeur et al. 2008; Houle et al. 2010). Caribou have been found to move away 

from logged areas during and after timber removal (Chubbs et al. 1993; Smith et al. 

2000; Shaefer and Mahoney 2007). In general, however, the impact of anthropogenic 

disturbances is much more pronounced while logging activities are occurring 

(Hebblewhite 2008). Such displacements can ultimately lead to an increase in movement 

rates and home range sizes over a short time period (Chubbs et al. 1993; Smith et al. 

2000; Courtois et al. 2007b) as individuals move away from disturbances. As harvesting 

becomes more intensive and it becomes harder for individuals to avoid logged sites, 

however, movement rates may decrease and ultimately jeopardize the spacing out 

strategy used by caribou, thus linking avoidance behaviour with observed population 

declines (Smith et al. 2000; Hebblewhite 2008).  

Shifts in habitat selection may also be observed as a result of forest harvesting 

(Chubbs et al. 1993; Schaefer and Mahoney 2007). Those shifts could potentially be of 

great consequences for caribou since their preferential habitat, the old-growth forest, is 
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the same forest type that is harvested (Courtois et al. 2008). For instance, females in 

Alberta were found to select more softwood forests when logging occurred, whereas that 

habitat type was previously used in proportion to availability (Smith et al. 2000). 

Furthermore, as clearcuts are spatially associated with mature forest remnants (such as 

linear strips or blocks), caribou may consequently be compelled to spend more time in 

unsuitable habitat as they need to cross clearcuts in order to reach their preferential 

habitat (Hins et al. 2009). Home range fidelity also decreases as disturbances grow in 

importance in the landscape, although individuals nonetheless still have a tendency to 

remain in altered habitats as disturbance levels increase (Courtois et al. 2007b; Faille et 

al. 2010). These kinds of factors can result in a decrease in the productivity and survival 

of wildlife populations (Fahrig 1997, 2003; St-Laurent et al. 2009). 

 

2.4.2.3 Synergistic impacts of anthropogenic disturbances 

Anthropogenic disturbances have been found to combine synergistically when 

impacting wildlife populations (Dyer et al. 2002; Coulon et al. 2008). For example, 

Coulon et al. (2008) found that roe deer’s avoidance of roads and human settlements was 

higher when both features were located in proximity. Dyer et al. (2002) also found that 

pipelines, when present as a single barrier, do not hinder movements of caribou, but when 

parallel to roads induce heightened avoidance behaviour. However, most studies have 

focused primarily on a single particular feature in the landscape without incorporating 

additional barriers found in the area (see Fortin et al. 2005 for examples). Some 

landscape features might also be associated with a higher degree of avoidance or 

decreased crossing rates (Coulon et al. 2008) and the identification of those features 
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might lead to a better understanding of what drives caribou movements and where 

mitigation measures should be implemented. Furthermore, impacts of barriers discussed 

in the literature focus mainly on the avoidance behaviour of individuals (e.g. Dyer et al 

2002; Laurian et al. 2008). Very few studies have looked at the actual influence of 

landscape structure on movement parameters of ungulates such as movement rates, 

speed, tortuosity of movement and step selection (but see Bradshaw et al. 1997; Smith et 

al. 2000; Johnson et al. 2002).  

 

2.5 Movement analysis 

Population densities at a particular location at one point in time result from births, 

deaths and movement or dispersal of organisms (Hanski 1998). As discussed by Turchin 

(1998), the first two are quite easily analyzed. The study of movement, however, is much 

more complex, since it varies spatially and temporally. Landscape use can vary with both 

spatial and temporal scales with respect to varying behavioural state of organisms and 

changing environmental conditions (e.g. Hebblewhite and Merrill 2008; Godvik et al. 

2009; Hins et al. 2009). For example, numerous species modify their behaviour annually 

(e.g. Hebblewhite and Merrill 2008; Hins et al. 2009), but also over the span of a single 

day (e.g. Godvik et al. 2009; Skarin et al. 2010; Bjørneraas et al. 2011), reflecting 

different behaviours in response to different factors. Relevant scales in the study of 

species habitat selection were classically considered under a framework developed by 

Johnson (1980), considering habitat selection through a series of hierarchical scales. 

Accordingly, species are expected to respond to their habitat in a hierarchical 

spatiotemporal manner, responding to different limiting factors at different scales (Rettie 
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and Messier 2000). Studying only a single scale could thus leave out habitat associations 

at other scales (Mayor et al. 2009). 

The challenge of conducting movement studies is also much more complex when 

dealing with far-ranging species inhabiting in heterogeneous environments, which is why 

early studies on movement mainly focused on insects (Johnson et al. 1992; Turchin 

1998). However, the study of movement in heterogeneous landscapes can give relevant 

information on the distribution of individuals in space and time and can be used 

complementarily with classic habitat selection in order to better understand the patterns 

observed (Leblond et al. 2010). With the arrival of GPS telemetry and similar 

technologies, it has become possible to study movements of far-ranging animals much 

more accurately and efficiently than what could be achieved in the past (Bascompte and 

Vilà 1997; Chetkiewicz 2006).  

Animal movement has typically been simulated and analyzed using random walks 

(Benhamou 2007). Even though the use of random walks has provided important insights 

on the movements of individuals in homogeneous environments (Turchin 1998), its use 

may be insufficient when trying to emulate movement patterns in complex environments 

where animals modify their movements in response to landscape heterogeneity 

(Viswanathan et al. 1999; Fauchald and Tveraa 2003; Benhamou 2007).  

Therefore, a series of methods have been proposed in order to study fine-scale 

movement including fractal analysis (Bascompte and Vilà 1997; Webb et al. 2009), first 

passage time (Fauchald and Tveraa 2003), hidden Markov models (Franke et al. 2004), 

identification of different movement types (e.g. intra-patch and inter-patch; Johnson et al. 

2002; Benhamou 2007), and mixtures of random walks (Morales et al. 2004) and 
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correlated random walks (Mårell et al. 2002). Analyses can now be performed based on 

the observation of complete pathways and their comparison with environmental cues 

(Turchin 1998). Animal behaviour could also be seen as a coarse-scale representation of 

wildlife movement and can be described using parameters such as home range size, 

movement rates, and overlap among conspecifics (Ims et al. 1993; Andreassen and Ims 

1998). 

  

2.6 Research context 

The data used for the analyses was obtained from 49 female caribou that were 

captured between 2004 and 2010 (see Table 2.1 for more details on number of 

individuals per year per area) using net-gunning from a helicopter (Potvin and Breton 

1988) and monitored using GPS (Global Positioning System) collar receiver (Lotek® 

models 2200L and 3300L and Telonics TGW-4680). The area where captures were 

performed is located in the boreal forest in the Saguenay Lac St-Jean and Côte-Nord 

regions in Québec, Canada, and consists of two sections (Figure 2.1). The southern 

section is located in the lake Portneuf zone (49
o
30’N, 70

o
30’W) and covers 

approximately 10 496 km
2
. The second section is located in the lake Piraube zone 

(50
o
50’N, 71

o
50’W) and covers approximately 20 564 km

2
. Caribou were captured every 

spring since 2004 in the Portneuf area and since 2005 in the Piraube area and were 

recaptured every one or two years depending on the programming and the battery pack in 

order to download locations. Collars were also recovered following the death of an 

individual or the failure of the collar. Depending on study area and collar models, 

receivers were programmed to obtain a location every 1, 2, 3, 4 or 6 hours. Only locations 
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with a dilution of precision lower than 10 were kept in order to assure a location precision 

less than 20 meters (Dussault et al. 2001). Landscape attributes that were used in the 

analyses were obtained from digitized ecoforest maps provided by the Ministère des 

Ressources naturelles et de la Faune du Québec dating from 2004 to 2009. 

 

 

 

Figure 2.1 – Figure of the study area with the two zones delimited using 100% minimum 

convex polygons based on all telemetry locations collected between 2004 and 2010 and 

an extra buffer zone of 10km.  
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Table 2.1 – Details on the number of individuals captured, recaptured and removed 

(death, removed or not spotted) from both study areas with the total number of 

individuals (n) monitored each year. All individuals are females unless otherwise 

mentioned. 

 

Capture 

period 

Portneuf area Piraube area 

Capt. Recapt. 
Individuals 

removed 
n Capt. Recapt. 

Individuals 

removed 
n 

2004-03-17 18   
24 

    

2004-04-01 6
a
       

2005-03-04 3 10 8 
19 

    

2005-03-16 3
b
 3 3

c
     

2005-04-06     6   6 

2006-03-05 1 4 2 
18 

    

2006-03-10 1 12 2     

2006-03-13     3 3 3 6 

2007-03-31 3 4 2 
20 

    

2007-04-01 4 8 1     

2007-07-11  1       

2007-xx-xx      4 2 4 

2008-03-11 6 8 2 
20 

    

2008-03-06 2 4 3     

2008-03-17     7 3 1 10 

2009-03-12  13  
20 

    

2009-03-10  7      

2009-xx-xx      10  10 

Total number of animal-years 121 
      

36 

a
 3 females and 3 males 

b
 3 females 

c
 3 males 
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2.7 Research objectives 

The main objective of this study was to investigate the impact of anthropogenic 

(i.e. mainly roads and clearcuts) and natural (i.e. fires, windthrows and insect outbreaks) 

disturbances on the movements of species inhabiting highly managed habitats across 

multiple spatiotemporal scales, using the woodland caribou as a biological model. 

Caribou habitat selection is known to be a hierarchical process (Rettie and Messier 2000) 

and we believed that individual habitat use would follow a similar pattern. A minimum of 

two spatial scales were thus needed in order to verify this. The global purpose of this 

study was thus sub-divided in two research objectives: 

 

1. to analyze the influence of anthropogenic and natural disturbances on the 

coarse-scale space use behaviour of caribou using variations in home-range 

size as a function of the amount of different types of disturbances included in 

them.  

 

2. to study the fine-scale movements of caribou when individuals are moving 

through or close to anthropogenic disturbances using a use-availability design 

contrasting observed movements with immediate habitat availability. Natural 

disturbances were left out of the fine-scale analysis in order to primarily focus 

on the influence of anthropogenic features. 

 

We used measured variation in home-range size in relation to changing 

disturbance levels in order to characterize coarse-scale space use. Home-range size can 
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be used as a proxy of space use (Andreassen et al. 1998) and has also been used by other 

studies done in our system (e.g. Hins et al. 2009; Faille et al. 2010).  

We used Step Selection Functions (SSF; Fortin et al. 2005) to investigate the 

influence of anthropogenic disturbances on the movements of woodland caribou. This 

method, closely related to Resource Selection Functions (RSF; Manly et al. 2002), 

represents a valuable descriptor of fine-scale movements by contrasting landscape 

characteristics along a straight line connecting two consecutive locations (hereafter called 

“step”; Turchin 1998) with local habitat availability. Unlike traditional RSFs, which 

characterize habitat availability as any location within individual home ranges (Arthur et 

al. 1996), the SSFs use random steps originating from the same beginning point as the 

observed step. Availability thus changes with each observed step, representing habitats 

readily available to individuals during their movement. Another interesting feature of an 

SSF is that it partially controls for serial autocorrelation, as it analyzes the independence 

of two successive points forming a step and considers the other steps as independent 

(Martin et al. 2009).   
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Chapter 3 

Evidence of thresholds in the capacity of female caribou to cope with cumulative 

disturbances. 
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Abstract 

Woodland caribou (Rangifer tarandus caribou) are closely associated with the 

boreal forest, an ecosystem that has been significantly modified by anthropogenic 

activities over the last century. A lot of interest has been given to the species’ response to 

disturbances in order to implement management plans successful in ensuring the species’ 

conservation. We investigated how caribou cope with disturbances using GPS telemetry 

data collected on 51 females in a highly managed landscape in Québec, Canada, between 

2004 and 2010, using home-range size as a proxy of caribou space use behaviour. 

Individuals were found to expand their home ranges as the amount of disturbances in 

their habitat increased, up to a point where further increase caused home range 

contraction. The density of major roads and the proportion of clearcuts had an important 

impact on space use throughout the whole year, but the impact of roads was particularly 

important during calving, summer and rut, while the impact of clearcuts prevailed in 

spring, early and late winter. Furthermore, we found that a more convoluted shape of 

cutblocks amplified the effect of clearcuts on caribou space use. These non-linear 

responses suggest that there is a limit to the adaptability of individuals in coping with 

anthropogenic disturbances. While home range expansion could affect survival through 

the use of unknown habitats, individuals confined in smaller home ranges could be forced 

into an ecological trap and easily be detected by predators, making current disturbance 

levels observed in the boreal forest and their cumulative amount in the landscape a major 

issue for the conservation of these woodland caribou populations.      
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Keywords: Canadian boreal forest; woodland caribou; forest loss and fragmentation; 

space use; movement; home-range size; disturbance threshold; roads; forest harvesting; 

non-linear responses.  

 

3.1 Introduction 

Human-induced disturbances play a major role in modifying many ecosystems 

worldwide and the resulting habitat loss (or alteration) and fragmentation are widely 

acknowledged as the most important factors impacting wildlife (Venter et al. 2006; 

Fisher and Lindenmayer 2007). For instance, in the North-American boreal forest, 

anthropogenic disturbances have superseded natural disturbances over the last century 

(Cyr et al. 2009). Forest harvesting, the main anthropogenic activity in the boreal forest, 

is known to modify the natural age structure of forest stands, greatly alter the quality of 

natural habitats and decrease overall landscape connectivity for numerous species 

(Burton et al. 1999). Harvesting also implants an increasingly dense road network 

(Forman et al. 2003), further fragmenting the landscape and impeding many species’ 

movements (Dyer et al. 2002). 

Habitat loss (i.e. an overall decrease in a particular habitat’s representation in the 

landscape associated with the increase of other land-cover types; St-Laurent et al. 2009) 

and habitat fragmentation (i.e. breaking apart of habitats, implying a decrease in habitat 

connectivity; With et al. 1997 and Fahrig 2003) are both species-specific and their 

impacts can differ in direction and intensity depending on a species’ habitat requirements 

(Fischer and Lindenmayer 2007; Smith et al. 2009). At the population level, habitat 

alterations can lead to the fragmentation and isolation of populations into smaller and 
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more susceptible subpopulations more likely affected by stochasticity and natural stress 

factors (Fahrig 2003). At the individual scale, disturbances can modify physiology and 

behaviour of organisms through a permanent or temporary loss of access to suitable 

habitats (Eigenbrod et al. 2008). Moreover, a loss of potentially suitable habitats may 

arise as the impacts of disturbances extend beyond the source of the disturbance (Dyer et 

al. 2001). Impacts of anthropogenic disturbances can be severe (e.g. Vistnes and 

Nellemann 2008), especially for far-ranging species whose movements encompass areas 

larger than the patches the forest mosaic is generally composed of (Ims et al. 1993). For 

such species, changes in habitat use patterns in response to disturbances may result in 

important repercussions at multiple biological scales and ultimately affect population 

viability (Ims et al. 1993; Seip et al. 2007; Johnson and St-Laurent 2011).  

Individuals exhibit different space use patterns in response to varying degrees of 

disturbance (e.g. Redpath 1995; Andreassen and Ims 1998) depending on the amount of 

suitable habitat left after alteration, landscape connectivity and the propensity of 

individuals to display site fidelity behaviour (Frair et al. 2008; Faille et al. 2010). For far-

ranging species, it is likely that individuals will make more extensive movements and 

thus expand their home range as disturbance levels increase in order to access enough 

suitable resources and compensate for functional habitat loss, relative to the hostility of 

the matrix, inter-fragment distances and the presence of habitat corridors (Andreassen et 

al. 1998; Selonen et al. 2001). When movements are hindered by disturbances, however, 

individuals may become constrained to smaller areas and consequently constrict their 

home ranges, potentially increasing spatiotemporal overlap with conspecifics and 

predators (Ims et al. 1993). Numerous wildlife species have been reported to be impacted 



30 

 

by disturbances across multiple facets of their ecology and respond in a non-linear 

manner with respect to the relative intensity of disturbances they are confronted with (e.g. 

Forman et al. 2003; Frair et al. 2008). Therefore, it seems reasonable to expect a non-

linear response from individuals from the same population yet occupying different 

landscape contexts. Primary home-range expansion followed by home-range contraction 

as the amount of disturbance passes some threshold compromising naturally occurring 

space use patterns could thus be expected. We hereafter define a threshold as the 

disturbance level over which a sudden or gradual shift in wildlife behavioural response is 

observed (Johnson submitted). 

The objective of our study was to analyze the influence of anthropogenic and natural 

disturbances on space use behaviour. We used the threatened woodland caribou (Rangifer 

tarandus caribou, hereafter referred to as caribou), declining throughout its range and 

closely associated with the boreal forest (Vors and Boyce 2009), as a biological model. 

Traditionally evolving under a natural disturbance regime, the distribution of caribou 

contracted over the last century and remnant populations now inhabit areas under 

intensive forest harvesting activities (Schaefer 2003; St-Laurent and Dussault 2012). 

Logging increases the conversion rate of old-growth coniferous forests, the preferential 

habitat of caribou, into early-seral stages, which can lead to functional habitat loss that 

can last up to 60 years (Courtois et al. 2007a). Conversely, the resulting early 

successional forests favour an increase in the distribution and abundance of moose (Alces 

alces), gray wolf (Canis lupus) and black bear (Ursus americanus; Dussault et al. 2005; 

Brodeur et al. 2008; Houle et al. 2010). Particularly vulnerable to predation, this change 

likely jeopardizes caribou’s anti-predator strategy (i.e. spacing out; see Bergerud and 
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Page 1987) by increasing their encounter rates with predators (i.e. apparent competition 

with moose; Bergerud and Elliot 1986; Seip 1992). The caribou thus appears like an ideal 

candidate to study the impacts of disturbances on wildlife space use at a large scale due to 

its close association with undisturbed boreal forest (Hins et al. 2009), its known 

sensitivity to human development (Fortin et al. 2008) and its historical adaptability to 

natural disturbances (Gustine and Parker 2008).  

We used home-range size as a proxy of caribou space use behaviour (i.e. a synthesis 

of movements; Andreassen et al. 1998). We predicted that (1) caribou would first expand 

their home ranges with increased levels of disturbances in their habitat (i.e. clearcuts, 

roads and natural disturbances), followed by home-range contraction as certain 

disturbance thresholds are exceeded. We also expected that (2) clearcuts associated with 

a higher degree of fragmentation (measured as edge-to-surface ratio) would have a higher 

impact than those resulting in less overall fragmentation and that (3) the impact of 

anthropogenic features would be greater than that of natural disturbances. Finally, we 

predicted that (4) due to annual variations in biological states and environmental 

conditions, the relative importance of disturbances would differ depending on the period 

of the year. 

 

3.2 Methods 

3.2.1 Study area 

The study area is located north of Lac Saint-Jean and the Saguenay River in 

Québec, Canada, and covers approximately 31 000 km². The area overlaps two regions 

centered on Piraube Lake in the north (49°42’– 51°00’N, 71°10’– 72°09’W) and Portneuf 
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Lake in the south (48°21’– 49°45’N, 69°51’– 71°12’W) that are distinguished by their 

dominant forest cover. The southern region of the study area is dominated by black 

spruce (Picea mariana) with balsam fir (Abies balsamea), white birch (Betula 

paperifera), white spruce (Picea glauca), trembling aspen (Populus tremuloides) and 

jackpine (Pinus banksiana). The northern region is dominated by old-growth coniferous 

forest and open forest with black spruce, balsam fir and jackpine stands (see Lesmerises 

et al. 2011). Weather conditions throughout the study area are comparable, with mean 

annual temperatures between -2.5 and 0.0 
o
C (extremes ranging from -38 to 33 

o
C) and 

mean annual precipitation between 1,000 and 1,300 mm, of which 30-35% falls as snow 

(Robitaille and Saucier 1998). Moose, gray wolf and black bear compose the main other 

large mammal species found in the study area. Forest harvesting is the main 

anthropogenic disturbance in the area, with a logging history of ~40 years for the 

southern and ~15 years for the northern region. Prior to data collection, the southern and 

northern regions were disturbed by anthropogenic features on ~35% and ~4% of their 

surface, respectively. Being significantly less impacted by harvesting, the disturbance 

dynamic in the northern area is mainly driven by natural disturbances (i.e. major fires, 

windthrows and insect outbreaks). 

 

 3.2.2 Data collection 

We monitored 48 adult female caribou from 2004 to 2010 (18 to 25 per year) 

using global positioning system (GPS) collars (Lotek models 2200L and 3300L, and 

Telonics TGW-4680). Individuals were captured using net-gunning and recaptured 

periodically in order to retrieve data, change batteries or remove collars. Collars were 
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also recovered following failure or death of an individual. They were programmed to 

attempt recording a location every 1, 2, 3, 4 or 6 hours. We based our telemetry survey on 

females only due to their strong association to calves, which constitutes the most 

vulnerable portion of the population, makes them strongly linked to population dynamics 

(Barten et al. 2001). Captures and manipulations were approved by Animal Welfare 

Committees for the Université du Québec à Rimouski (certificate #CPA-36-08-67). 

 We used the home ranges of individual caribou, defined as the 100% minimum 

convex polygon (MCP; Mohr 1947), as a proxy of space use. This method was preferred 

over the kernel method as it yields more precise area estimates when dealing with a large 

number of GPS telemetry locations (Downs and Horner 2008). Furthermore, kernel 

estimates have been found to be biased when used on animals exhibiting site fidelity 

behaviour (Hemson et al. 2005), as observed for females in our study area (Faille et al. 

2010). We only used home ranges based on a minimum of 100 locations to obtain 

unbiased estimations (Girard et al. 2002). According to behavioural changes throughout 

the year related to biological phases of the caribou life cycle (see Hins et al. 2009, 

companion project in the same study area), home ranges were assessed for six relevant 

periods of the year for caribou: spring (15 April – 14 May), calving (15 May – 14 June), 

summer (15 June – 14 September), rut (15 September – 14 November), early winter (15 

November – 21 February) and late winter (22 February – 14 April). The winter period 

was divided in two parts in an effort to account for potential alterations in space use 

behaviour due to changing climatic and snow conditions (Smith et al. 2000).  

As our primary focus was the impact of disturbances on caribou home-range size, 

only habitat categories that were suspected or recognized to have a detrimental influence 
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on caribou behaviour (e.g. avoidance, see Courtois et al. 2007a; Vistnes and Nellemann 

2008; Hins et al. 2009) were included in our analyses (Table 3.1). We also considered 

natural disturbances and water bodies as landscape features potentially influencing home-

range size. Habitat features were obtained from digitized ecoforest maps provided by the 

Ministère des Ressources naturelles et de la Faune du Québec which were updated each 

year with new natural and anthropogenic disturbance polygons (e.g. forest fires, 

cutblocks). Minimum mapping unit size was 4 ha for forested polygons and 2 ha for non-

forested areas (e.g., water bodies, bogs). Anthropogenic features consisted of different 

types of roads and clearcuts of varying age. Roads were distinguished according to their 

width and then grouped as major roads (i.e. principal and secondary roads of width equal 

to 35 and 30 m, respectively) and minor roads (i.e. tertiary and quaternary roads of width 

equal to 25 and 20 m, respectively). No paved roads were found in our study area. 

Clearcuts were divided according to the time elapsed since logging activities: recent 

clearcuts (0-5 years old), old clearcuts (6-20 years old) and established regenerating 

stands (21-40 years old). However, strong correlations between minor road density and 

the proportions of 0-5 and 6-20 year-old clearcuts prevented us from using them in the 

same models. As minor roads are used to access clearcuts, they are inherently co-

dependent; we therefore decided to include only the proportions of clearcuts in the 

candidate models.  

 The proportion of the different clearcut categories and natural features as well as 

the density of major roads and clearcut edges (km/km
2
) were measured within each home 

range using ArcView 3.2 and ArcGIS 9.3 (ESRI Inc., Redlands, CA). The proportion of 

clearcuts and its associated edge density were highly correlated and therefore could not 
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be included in the same analysis. We thus calculated an edge-to-surface ratio (used here 

as a proxy of mature forest fragmentation) by dividing the density of each type of 

clearcut edge by the proportion of the same clearcut type within individual home ranges. 

This significantly reduced the correlation between the variables and allowed us to 

investigate how a variation in edge-to-surface ratio would modify the impact of the 

surface lost through clearcutting. We also expected to observe a spatial structure in our 

study area due to a gradient of forest stand composition, habitat disturbance and forest 

management practices (Lesmerises et al. 2011). Consequently, we included the latitude of 

each home range centroid as a covariate in our candidate statistical models (Dale and 

Fortin 2002; Legendre et al. 2002). Initial expectations and a priori visual inspection of 

our data also suggested that a non-linear relationship might exist between the amount of 

certain disturbances and home-range size; quadratic terms were thus included in our 

analysis for the density of major roads and the proportions of 0-5 year-old clearcuts, 6-20 

year-old clearcuts and 21-40 year-old regenerating stands.  
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Table 3.1 – Description of variables considered in the linear mixed candidate models relating caribou home-range size to disturbance 

variables and latitude for 51 female caribou in Saguenay – Lac-Saint-Jean (Québec, Canada) between 2004 and 2010. Latitude was 

measured in km while proportions were in % (or km
2
/km

2
) and densities in km/km

2
. Roa34 (and associated quadratic term) were not 

included in candidate models because of collinearity problem (see text). 

Group Variable Description Representation in home ranges 

   Average SD 

Latitude Lat Latitude of home range centroid 4504.962 2053.202 

Roads 

Roa12 Major road density (classes 1 and 2) 0.044 0.054 

Roa12
2
 Quadratic term for Roa12 

Roa34 Minor road density (classes 3 and 4) 1.104 0.837 

Roa34
2
 Quadratic term for Roa34   

Clearcuts 

Cut05 Proportion of 0-5 year-old clearcuts 0.036 0.052 

Cut05
2
 Quadratic term for Cut05 

Cut620 Proportion of 6-20 year-old clearcuts 0.202 0.188 

Cut620
2
 Quadratic term for Cut620 

 Regen Proportion of regenerating stands (21-40 years old) 0.056 0.064 
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 Regen
2
 Quadratic term for Regen 

ESR 

ESR05 Density of 0-5 year-old clearcut edge divided by Cut05 12.328 14.606 

ESR620 Density of 6-20 year-old clearcut edge divided by Cut620 13.408 8.372 

ESRrgn Density of regenerating stand clearcut edge divided by Regen 22.127 13.259 

Natural 

Water Proportion of water bodies 0.1260 0.080 

Natpt Proportion of natural disturbances 0.048 0.092 
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Statistical analysis 

 Generalized linear mixed models were used with home-range size as response 

variable, proportion or density of each disturbance category (Table 3.1) as independent 

variables and individuals as random factor. We used a logarithmic transformation on 

home-range sizes in order to respect the test assumptions. Candidate models (see Table 

3.2) referring to competing hypotheses were ranked using Akaike’s Information Criterion 

adjusted for small sample size (AICc; Burnham and Anderson 2002). The random factor, 

the intercept, the residual variance and the model covariates were included in the number 

of parameters (k) for the AICc ranking. Model averaging was conducted when competing 

models ranked within a ∆AICc value ≤ 2 of the most parsimonious model (Burnham and 

Anderson 2002). Informative variables in explaining variations in home-range size were 

identified using a confidence interval of 0.95 (95%CI), i.e. when their 95%CI did not 

encompass zero. This enabled us to identify variables that could have been included in 

best ranking models without adding significant strength to the model (see Arnold 2010). 

We hereafter use the term “significant” to refer to the informative variables and this term 

is not based on null-hypothesis testing using p-values. We identified the thresholds 

associated with the significant quadratic terms by measuring the maxima of the 

relationship using the coefficients obtained in the statistical analysis. We then performed 

Monte Carlo simulations (i.e. parametric bootstrap using the mean values and their 

associated standard errors from the models) to generate theoretic distributions of 

threshold values on which we measured the standard deviation as a measure of 

uncertainty. Figures of predicted home-range size values were obtained on the range of 

the observed values of the variable of interest on the x-axis (i.e. for major roads and the 
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different types of clearcuts) while all other variables were set to their mean value for that 

period.  

 

3.3 Results 

We obtained home range estimations for 48 individuals (i.e. 37 in the south of the 

study area and 11 in the north) followed between 1 and 6 consecutive years. The mean 

number of locations per individual home range was 507.82 ± 427.84 (SD), but differed 

between periods of the year. The final analysis included a total of 633 home ranges, with 

a mean annual size of 160.22 ± 224.83 km
2
. Average home-range size differed greatly 

between periods (mean ± SD: Spring: 182.49 ± 280.18 km
2
; Calving: 118.75 ± 154.50 

km
2
; Summer: 208.38 ± 280.85 km

2
; Rut: 168.66 ± 134.18 km

2
; Early winter: 229.28 ± 

259.51 km
2
; Late winter: 78.17 ± 155.52 km

2
). 

The global model was the most parsimonious for all periods in explaining variation in 

home-range size. The model including only anthropogenic features was found to be 

important (i.e. ∆AICc ≤ 2) for the summer period and model averaging was employed. 

For the best ranking models, the model fit (adj-R
2
) varied between periods, from 0.59 in 

Late winter to 0.82 in Early winter (Table 3.2). Considering that preferential habitats 

were not included in the analysis and that they could account for an important part of 

home-range size variation, we believe that explaining between 59 and 82% of the 

variance means that our models performed well in explaining variations in caribou home-

range size.  
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Table 3.2 – Candidate model ranking based on the AICc for each period. Latitude of each 

home range centroid was included in all candidate models. Most parsimonious models 

(i.e., with ΔAICc < 2) are shown in bold, model number of parameter (K), log-likelihood 

(LL), difference in AICc values (ΔAICc) and weight (ωi) are given. Model performance 

was assessed using the adjusted R
2
. See Table 3.1 for description of variables and 

models. (Roads only included major roads). 

 

Period Model structure K LL ∆ AICc ωi adj-R
2
 

Spring 

(n=113) 

Roads + Clearcuts + ESR + Natural 17 -123.31 0.00 0.86 0.67 

Roads + Clearcuts + ESR 15 -127.87 3.62 0.14 0.64 

Clearcuts + ESR 13 -140.36 23.34 0.00 0.55 

Clearcuts 10 -145.56 26.22 0.00 0.51 

ESR 7 -159.88 47.76 0.00 0.37 

Roads 6 -166.59 58.92 0.00 0.29 

Natural 6 -175.36 76.44 0.00 0.17 

Calving 

(n=112) 

Roads + Clearcuts + ESR + Natural 17 -131.13 0.00 0.99 0.58 

Roads + Clearcuts + ESR 15 -138.43 9.09 0.01 0.54 

Clearcuts + ESR 13 -149.54 26.04 0.00 0.42 

Roads 6 -159.20 28.43 0.00 0.36 

Clearcuts 10 -161.42 42.24 0.00 0.31 

ESR 7 -168.30 48.91 0.00 0.24 

Natural 6 -180.88 71.79 0.00 0.06 

Summer 

(n=109) 

 

Roads + Clearcuts + ESR + Natural 17 -105.80 0.00 0.56 0.59 

Roads + Clearcuts + ESR 15 -108.85 0.53 0.43 0.62 

Clearcuts + ESR 13 -117.93 13.37 0.00 0.56 
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Clearcuts 10 -131.97 33.86 0.00 0.48 

Roads 6 -137.04 34.57 0.00 0.41 

ESR 7 -136.72 36.21 0.00 0.38 

 Natural 6 -157.11 74.72 0.00 0.12 

Rut 

(n=93) 

Roads + Clearcuts + ESR + Natural 17 -56.47 0.00 0.87 0.72 

Roads + Clearcuts + ESR 15 -61.33 3.80 0.13 0.69 

Roads 6 -84.97 27.81 0.00 0.43 

 

Clearcuts + ESR 13 -81.01 37.53 0.00 0.52 

Clearcuts 10 -85.08 37.71 0.00 0.47 

Natural 6 -107.23 72.33 0.00 0.06 

ESR 7 -106.78 73.77 0.00 0.09 

Early 

winter 

(n=86) 

Roads + Clearcuts + ESR + Natural 17 -57.84 0.00 1.00 0.82 

Roads + Clearcuts + ESR 15 -75.03 28.23 0.00 0.74 

Clearcuts + ESR 13 -80.61 33.59 0.00 0.70 

Clearcuts 10 -88.43 41.10 0.00 0.64 

ESR 7 -118.73 94.22 0.00 0.27 

Natural 6 -120.43 95.23 0.00 0.25 

Roads 6 -128.50 111.38 0.00 0.07 

Late 

winter 

Roads + Clearcuts + ESR + Natural 17 -179.12 0.00 0.72 0.59 

Roads + Clearcuts + ESR 15 -183.16 2.70 0.19 0.56 

(n=120) 
Clearcuts 10 -187.07 5.34 0.05 0.53 

Clearcuts + ESR 13 -190.94 5.66 0.04 0.50 

 

Roads 6 -219.37 53.26 0.00 0.20 

ESR 7 -224.11 64.98 0.00 0.13 

Natural 6 -229.10 72.72 0.00 0.06 

 



42 

 

Disturbances found to be important initially caused an increase in home-range size 

(except the edge-to-surface ratio for 21-40 year-old regenerating stands in early winter), 

indicating that an increase in the amount of any type of disturbance within caribou habitat 

induced an expansion of home ranges (Figure 3.1, Table 3.3). Major roads were 

significant in explaining home-range size variation for all periods and had a particularly 

strong impact during calving, summer and rut (Table 3.3). The influence of clearcuts was 

strongest during spring, early and late winter, although 21-40 year-old regenerating 

stands also had a strong effect throughout most of the year besides the calving period. 

The extent of the impact on home-range size variation of 0-5 year-old clearcuts and 21-40 

year-old regenerating stands was higher than that of 6-20 year-old clearcuts throughout 

the whole year (Table 3.3). Edge-to-surface ratios were also important in explaining 

home-range size variation, especially for 0-5 year-old clearcuts during all periods and for 

6-20 year-old clearcuts for spring and calving. Natural disturbances had significant 

influence on home-range size for all periods (except during calving), while water bodies 

were important during calving and early winter. Even though they were always included 

in the most parsimonious models and seemed to have a significant influence on home-

range size year-round, natural disturbances alone were less important in explaining 

individual responses than anthropogenic disturbances for all periods.  
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Table 3.3 – Coefficient estimates () and 95% confidence intervals (95% CI) of the independent variables of the most parsimonious 

models (∆AICc ≤ 2) explaining female caribou home-range size. Coefficients for which the 95% CI were not overlapping zero are 

shown in bold.   Model averaging was conducted for Summer, Rut and Late winter periods. 

 

 Lat Roa12 Roa12
2
 Cut05 Cut05

2
 Cut620 Cut620

2 
Regen Regen

2 
ESR05 ESR620 ESRrgn Water Natpt 

Spring               

 0.02 19.30 -102.39 23.95 -237.83 6.86 -9.13 13.73 -11.73 0.02 0.03 0.01 1.20 2.19 

±95%CI* <0.01 6.92 36.80 19.87 185.86 3.68 6.17 9.29 37.69 0.02 0.02 0.02 2.59 1.39 

Calving               

 0.01 25.27 -141.30 2.00 -13.50 3.49 -5.41 8.52 -8.84 0.03 0.02 0.01 5.36 1.10 

±95%CI* <0.01 11.64 88.29 5.82 14.92 3.62 8.07 8.84 30.93 0.02 0.02 0.01 2.74 2.35 

Summer               

 0.01 23.94 -144.02 -0.19 -11.89 4.12 -7.36 22.57 -71.23 0.05 0.01 0.01 1.27 6.23 

±95%CI <0.01 10.16 73.82 7.52 26.00 4.09 8.87 9.73 32.68 0.02 0.02 0.02 2.29 4.70 
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Rut 

 0.01 24.60 -141.69 9.04 -42.11 3.22 -5.20 16.77 -57.01 0.03 -0.01 0.01 0.39 3.48 

±95%CI* <0.01 7.42 57.36 7.85 47.09 2.97 6.63 6.69 22.76 0.02 0.02 0.02 1.24 2.14 

Early winter               

 0.02 13.53 -55.36 12.92 -40.59 8.72 -9.38 25.10 -70.08 0.01 0.01 -0.02 5.61 3.10 

±95%CI* 0.01 7.73 39.86 14.23 153.80 3.87 6.44 6.77 24.67 0.01 0.03 0.01 1.98 1.42 

Late winter               

 0.01 9.90 -24.02 34.50 -101.66 7.55 -5.96 23.03 -69.302 0.01 -0.01 0.01 1.44 3.36 

±95%CI* <0.01 7.24 22.92 12.68 40.04 4.90 7.77 15.91 82.70 0.01 0.04 0.01 1.95 2.35 

*Confidence intervals can be obtained by adding and subtracting the ±95%CI value to its associated β value. 
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Significant non-linear relationships were found in several periods for major roads, 0-5 

year-old clearcuts, 6-20 year-old clearcuts and 21-40 year-old regenerating stands (Figure 

3.1). Threshold values were relatively constant between periods for roads and clearcuts, 

except for 0-5 year-old clearcuts in late winter and regenerating stands in early winter. 

However, these estimates are uncertain due to a lack of observed data points spanning the 

range of disturbance levels predicted. Lower threshold values seemed to be associated 

with periods of the year when the impact of the different disturbance types was at its 

highest (Tables 3.3-3.4).  
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Figure 3.1 – Predicted home-range sizes based on a log-transformation of home-range 

sizes for all significant quadratic relationships. Predicted values were obtained on the 

range of the observed values of the variable of interest on the x-axis while all other 

variables were set to their mean value for that period. Home-range sizes were back-

transformed into km
2 

for the graphical representation. 
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Table 3.4 – Threshold values for variables exhibiting significant quadratic relationships 

(when available; if not, noted as ‘n/a’). Disturbance threshold values are independent 

from the values of the other predicted variables. Uncertainty on threshold values was 

obtained using Monte Carlo simulations. 

Periods Disturbance thresholds 

Roa12 Cut05 Cut620 Regen 

(km/km
2
) sd (%) sd (%) sd (%) sd 

Spring 0.094 0.009 0.050 0.019 0.376 0.189 n/a n/a 

Calving 0.089 0.014 n/a n/a n/a n/a n/a n/a 

Summer 0.083 0.007 n/a n/a n/a n/a 0.158 0.009 

Rut 0.087 0.009 n/a n/a n/a n/a 0.147 0.014 

Early winter 0.122 0.037 n/a n/a 0.465 0.172 0.179 0.015 

Late winter 0.206 0.271 0.170 0.017 n/a n/a n/a n/a 

 

3.4 Discussion 

We found that caribou respond to an increase in the amount of disturbances 

primarily by expanding and subsequently by contracting their home ranges as disturbance 

levels in their habitat increase above given thresholds. Other studies that investigated the 

influence of disturbances on a variety of species space use behaviour found that 

individuals expanded (e.g. Redpath 1995; McLoughlin and Ferguson 2000) or contracted 

(e.g. Wolff et al. 1997; Andreassen et al. 1998) their home ranges in response to habitat 

alterations and/or decreased habitat quality. Those studies suggested that different 

populations of the same species exhibit different behavioural responses to disturbances 
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(see Selonen et al. 2001). In addition to these findings, our results further suggest that 

different behavioural responses may be observed from individuals of the same population 

depending on the immediate landscape context each individual is confronted with.  

The home-range expansion response exhibited by individuals is likely due to a 

reduction of the amount of suitable habitats. In this context, a loss of suitable habitats 

includes all potential sources of disruption of biological activities that may lead caribou 

to displace themselves away from a certain part of the landscape (e.g. risk of predation 

associated with certain habitat types, human presence and traffic levels). For example, 

Seip et al. (2007) found that mountain caribou were locally displaced away from parts of 

their habitat due to the presence of snowmobiles in winter. Furthermore, disturbances (i.e. 

mainly clearcuts and roads in this study) can also drastically decrease connectivity in the 

landscape (Fahrig and Rytwinski 2009) and significantly reduce the amount and quality 

of accessible habitat available to individuals (Eigenbrod et al. 2008). In their effort to 

access alternative suitable habitats, individuals are compelled to make more extensive 

movements and increase their home-range size (Chubbs et al. 1993; Smith et al. 2000) 

which can lead to an increase in energy expenditure and decrease in foraging efficiency 

and may result in lower individual body condition (Chan-McLeod et al. 1999). 

Additionally for caribou in our study area, as mature forest remnants such as linear strips 

or blocks are spatially associated with clearcuts, individuals are forced to cross clearcuts 

in order to reach their preferential habitat and spend more time in hostile habitats (Hins et 

al. 2009), leading to an increase in encounter probabilities with predators (Ims et al. 

1993; Rettie and Messier 2000; Vors et al. 2007). Furthermore, linear features such as 

roads open the territory for human, predators and alternative prey species and facilitate 
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access to caribou habitat, increasing their vulnerability (Hebblewhite 2008; Whittington 

et al. 2011). Caribou have also been found to displace themselves away from logged 

areas during and after operations (Chubbs et al. 1993; Smith et al. 2000; Shaefer and 

Mahoney 2007) and were also found to significantly avoid roads and adjacent areas 

(Dyer et al. 2002; Leblond et al. 2011). Ultimately, such behavioural shifts could have 

population level consequences by decreasing survival, reproductive output and 

population growth (Johnson and St-Laurent 2011). 

Other studies have confirmed the synergistic impact of the clearcut area and their 

associated fragmentation effect on wildlife (Fahrig 1997; St-Laurent et al. 2009), a 

phenomenon that we also observed. This advocates the postulate that clearcut patches 

should have a resulting edge length as low as possible (i.e. round-shaped clearcuts) in 

order to dampen their influence on caribou space use behaviour in managed boreal forest. 

The fragmentation levels of a disturbance seem to play an important role and minimizing 

their influence on caribou could be valuable in trying to lessen the overall impact of 

disturbances in the landscape.  

Although water bodies and natural disturbances clearly impacted home-range size 

to a lesser degree than anthropogenic disturbances, they nonetheless have a biological 

significance as they are naturally occurring in the landscape and are often outside our 

control. We then argue that natural disturbances induce an initial degree of mature forest 

loss and fragmentation that is cumulative to anthropogenic disturbances and consequently 

should be considered when planning logging and road building in a given landscape (see 

Sorensen et al. 2008 for similar conclusions). 
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The behavioural transition from home-range expansion to contraction suggests 

that there exist disturbance thresholds where the cost-benefit balance of continued 

expansion shifts and individuals begin using smaller areas as disturbance levels further 

increase. It is likely that over those thresholds individuals cannot avoid using unsuitable 

habitats anymore and will decrease their movement rates and access suboptimal habitats 

as movement in a hostile matrix becomes too risky (Smith et al. 2000; Hebblewhite 

2008). Considering the natural propensity of caribou to exhibit site fidelity behaviour 

regardless of alteration levels in their habitat and combined with the limited movement 

capacities noted at high disturbance levels, we believe that female caribou could exhibit a 

maladaptive habitat selection behaviour that constrains them to such suboptimal habitats 

(i.e. an ecological trap; Faille et al. 2010). This could in turn induce changes in spatial 

organization, movement patterns and reproductive activities, as well as increase predator 

encounter rates either through the use of predator-frequented habitats or by rendering 

females more conspicuous in the landscape (Andreassen et al. 1998). This could 

ultimately jeopardize their anti-predator strategy. Most importantly, the observed home-

range contractions suggest that current disturbance levels occurring in our study area 

have already reached intensities that effectively constrain individuals to smaller areas and 

potentially lead them into such ecological traps. Such traps could be particularly 

important for calves, whose mortality by predation is the most limiting factor influencing 

caribou populations (Barten et al. 2001). A decrease in successful recruitment due to the 

inability of females to avoid risky habitats could therefore have important repercussions 

for populations. 
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Our results also suggest that individuals do not respond consistently to 

disturbances throughout the year. Caribou space use behaviour changes throughout the 

year (Hins et al. 2009) as well as environmental conditions within their habitat (e.g. 

Smith et al. 2000; Dyer et al. 2001). Those variations visibly have an influence on the 

extent to which individuals are affected by modifications in their habitat, which is 

reflected in the different predicted home-range sizes at thresholds. Road crossing rates for 

ungulates have been found to differ daily and seasonally in response to factors such as 

road traffic and resource requirements (Dyer et al. 2002; Dussault et al. 2007). 

Accordingly, our results show that major roads in our study area had an important 

influence throughout the year, but they had the strongest impact during calving, summer 

and rut. Although we did not include traffic level data in our analysis, traffic levels are 

higher during these three periods mostly because of the absence of a snow cover. 

Moreover, the observed road density thresholds suggest that individuals can tolerate 

higher densities of roads before a behavioural shift in the winter period, especially during 

late winter, when traffic level is at its lowest and individuals’ movement capacities are 

impeded by snow accumulation (Smith et al. 2000). Clearcuts were also important 

throughout the year, but especially during winter and spring, when the impact of roads 

was lower. Individual behaviour also shifted at lower disturbances thresholds for 0-5 

year-old clearcuts and regenerating stands, which could be related to human activities in 

and close to young clearcuts (Burton et al. 1999) and to higher densities of predators in 

regenerating stands (Brodeur et al. 2008; Houle et al. 2010). The higher thresholds 

observed for 6-20 year-old clearcuts could also be related to their high availability in the 

landscape and their close association with preferential habitats (Hins et al. 2009). 



52 

 

Interestingly, our results showed that despite a large variability in home-range sizes 

depending on the period of the year (e.g. due to higher vulnerability in the calving and 

post-calving period), shifts between expanding and contracting phases were nonetheless 

relatively synchronized around given disturbance thresholds. 

 

3.5 Conclusion 

The non-linear responses exposed by our analysis suggest that there exists a limit 

to the adaptability of individuals in coping with anthropogenic disturbances. Even if 

caribou are negatively impacted by disturbances occurring in their habitat, the initial 

response (i.e., home-range expansion) still reflects a natural tendency to compensate for 

lost habitat while their movement capacities are not completely hindered and they are still 

able to adapt to their changing environment. Above certain disturbance thresholds, 

however, individuals may be confined within suboptimal habitats that can become 

ecological traps. Initiated by a level of disturbance that is too important, this response has 

a higher potential to threaten not only space use patterns, but also reproductive success 

and ultimately population viability. Measured within caribou home ranges, those 

thresholds may however not be representative of the entire landscape due to the 

hierarchical habitat selection exhibited by individuals (Rettie and Messier 2000) and may 

also be group or population specific (Pardini et al. 2010).  

We are confident that thresholds identified in this study could potentially support 

conservation and forest management plans. However, they primarily underline that 

disturbance levels currently observed in the southern fringe of the boreal forest already 

constrain individuals to decrease their home-range size; consequently, any further 
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increase of anthropogenic disturbances in caribou habitat will only accelerate this 

behavioural shift toward home-range contraction. Then, thresholds should not represent 

targets for human development but rather critical ecological levels over which individuals 

exhibit potentially highly detrimental behavioural changes that could result into 

detrimental consequences at the population level (Johnson submitted). Nonetheless, we 

believe that identifying such thresholds offered us a better understanding of the 

mechanisms linking space use behaviour and disturbance levels. Integrating behavioural 

shifts could help us act proactively to slow down the ongoing alteration rate of natural 

landscapes under levels individuals could sustain and ultimately ensure the persistence of 

caribou populations in managed landscapes. 
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Abstract 

Although prey species typically respond to the most limiting factors at coarse 

spatiotemporal scales while addressing biological needs at finer scales, such behaviour may 

become challenging for species inhabiting human altered landscapes. We investigated how 

woodland caribou, a threatened species inhabiting North-American boreal forests, modified their 

fine-scale movements when confronted to the presence of forest management features (i.e. 

clearcuts and roads) across multiple facets of their ecology. We used GPS telemetry data 

collected between 2004 and 2010 on 49 female caribou in a heavily managed area in Québec, 

Canada. Movements were studied using a use-availability design contrasting observed steps (i.e. 

line connecting two consecutive locations) with random steps (i.e. proxy of immediate habitat 

availability). Although caribou mostly avoided disturbances, individuals nonetheless modulated 

their fine-scale response to disturbances on a daily and annual basis, potentially compromising 

between risk avoidance in periods of higher vulnerability (i.e. calving, early and late winter) 

during the day and foraging activities in periods of higher energy requirements (i.e. spring, 

summer and rut) during dusk/dawn and at night. Additionally, although females typically 

avoided crossing clearcut edges and roads at low densities, crossing rates were found to rapidly 

increase in greater disturbance densities. In some instance, however, females were less likely to 

cross edges and roads as densities increased. This may trap females or increase the use of 

habitats associated with higher vulnerability. It appears that caribou found in our system may 

need to address limiting factors even at finer scales and thus disrupt their biological activities in 

response to increases in perceived risk. Further increases in anthropogenic disturbances would 

then exacerbate such behavioural responses and likely endanger the future persistence of caribou 

in the boreal forest.  
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harvesting, forest roads, movements, step selection function, woodland caribou. 

 

4.1 Introduction 

Most species inhabit environments where biological requirements (e.g. foraging, 

reproductive activities and parental care) with local threats to survival (Frid and Dill 2002). 

Organisms thus adapt how they use their habitat as a result of their perception of habitat 

uncertainty (e.g. risk of predator encounters; Sih 1992), often doing so across multiple spatial 

scales (Johnson et al. 2001). Typically, species orient habitat use hierarchically, following the 

hierarchy of factors likely to affect individual fitness (Rettie and Messier 2000). Likewise, 

individuals may address limiting factors differentially on a temporal basis with respect to 

changes in biological states of both prey and predators alongside variation in environmental 

conditions (e.g. Hebblewhite and Merrill 2008; Godvik et al. 2009; Hins et al. 2009). 

Accordingly, numerous species are strongly cued to plant phenology in periods of high energy 

requirements (Post et al. 2003), yet particularly vigilant when moving through their habitat in 

periods of higher vulnerability (Zollner and Lima 2005).   

Complete avoidance of limiting factors is however a daunting task for individuals 

inhabiting heterogeneous environments and they may consequently need to be addressed at 

gradually finer spatiotemporal scales (Sih 1992; Rettie and Messier 2000). Such responses may 

be particularly apparent in species with extensive movement patterns through the inclusion of a 

greater diversity of habitats in their range (Ims et al. 1993). Individuals may thus be compelled to 
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compromise between biological requirements and risk avoidance on a daily basis, potentially at 

the expense of other biological activities.  

While risk assessment is typically associated with predation, it nonetheless involves 

multiple factors that combine to affect levels of uncertainty associated with a given habitat. 

Some ecologists have proposed that anthropogenic disturbances (hereafter called disturbances) 

could trigger behavioural responses that are similar to those elicited by predators (see Frid and 

Dill 2002), thereby increasing habitat uncertainty and combining with natural stressors to impact 

prey species. In the context of this study, habitat uncertainty thus encompasses factors that 

induce disturbance stimuli (e.g. predation risk, forage availability and traffic levels) and 

influence the risk perceived by organisms, which may trigger behavioural responses. 

Environments affected by expanding human activities impose significant pressures on prey 

species (e.g. Renaud 2012), increasing the likelihood that wildlife found in such habitats would 

modify their fine-scale behaviour. North-American wildlife inhabiting the boreal forests is 

currently faced with such a scenario and many species suffer from intensified human activities 

(Burton et al. 1999). Of greatest concern, timber harvesting creates early-seral forests and a 

dense road network that significantly alters the natural structure of the landscape (Forman et al. 

2003). As a result, the historical natural disturbance regime has been superseded by forestry-

related features over the last century (Cyr et al. 2009).  

 The objective of this study was to evaluate the impacts of disturbances on individual 

movements of woodland caribou (Rangifer tarandus caribou, hereafter referred to as caribou), a 

threatened species throughout North-America (COSEWIC 2011). This species offered a unique 

opportunity to study the fine-scale movements of species typically associated with mature forests 

yet inhabiting heavily managed environments (Environment Canada 2011). Naturally adapted to 
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cope with natural disturbances across their range (Gustine and Parker, 2008), remnant caribou 

populations have nonetheless suffered severe constrictions of their range that are strongly 

correlated with forestry activities (Schaefer 2003; St-Laurent and Dussault 2012). The early 

successional forests created by harvesting jeopardizes the anti-predation strategy used by caribou 

(i.e. spacing out; Bergerud and Page, 1987) by favouring local increases in moose (Alces alces), 

gray wolf (Canis lupus) and black bear (Ursus americanus) densities (Dussault et al. 2005; 

Brodeur et al. 2008; Houle et al. 2010). As a consequence, encounter rates with alternative prey 

species and predators increase, exacerbating caribou vulnerability.  

Like other wildlife species, the woodland caribou has been found to respond to limiting 

factors across multiple spatiotemporal scales, with predation avoidance on the one hand (e.g. 

Bergerud and Page, 1987; Rettie and Messier, 2000) and disturbances on the other (e.g. Schaefer 

2003; Hins et al. 2009) influencing large-scale behaviour, while biological requirements are met 

at finer scales (e.g. Briand et al. 2009). We however recently demonstrated that disturbance 

levels observed within our study area possess the potential to compel individuals to remain in 

areas increasingly altered (Beauchesne et al. submitted). Combined with a strong range fidelity 

(Faille et al. 2010), it seemed reasonable to expect alterations of fine-scale behaviour in response 

to the presence of disturbances. We therefore expected (1) that individuals would avoid moving 

through disturbances and crossing clearcut edges and roads. We further anticipated (2) that 

response to disturbances would differ both daily and annually. More specifically, we expected 

that (2a) individuals would avoid disturbances predominantly during periods of higher 

vulnerability (e.g. calving) and (2b) during the day when perceived risk in disturbances should be 

more important. Finally, we expected that (3) the immediate landscape contexts would impact 

the relative probability of individuals crossing through clearcut edges and roads. 
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4.2 Methods 

4.2.1 Study area 

The study area is located in Québec, Canada, and covers approximately 31 000 km
2
 

centered on two adjacent sectors north of the Saguenay-Lac Saint-Jean region: Piraube Lake in 

the north (49°42’– 51°00’N, 71°10’– 72°09’W) and Portneuf Lake in the south (48°21’– 

49°45’N, 69°51’– 71°12’W). Mean annual temperature in both areas varies between -2.5 and 0.0 

o
C (extremes ranging from -38 to 33 

o
C) and mean annual precipitation around 1000 and 1300 

mm, 30-35% of which is snow (Robitaille and Saucier, 1998). Large mammals found in the area 

are caribou, moose, gray wolf and black bear. The two sectors are distinguished by their 

dominant forest cover. Black spruce (Picea mariana) with balsam fir (Abies balsamea), white 

birch (Betula paperifera), white spruce (Picea glauca), trembling aspen (Populus tremuloides) 

and jackpine (Pinus banksiana) dominate the southern region, while old-growth coniferous forest 

and open forest with black spruce, balsam fir and jackpine stands dominate the northern area. 

The southern and northern regions have a logging history that extends over the last 40 and 15 

years, respectively. Our study area thus presents an interesting latitudinal gradient of 

anthropogenic habitat alteration, with the southern region being altered across ~35% (Portneuf 

region) and the northern region by 4% of the forested landscape (Piraube region) prior to our 

data collection. Similarly, road densities are generally greater in the south (0.04 km/km
2
 for 

major roads and 1.20 km/km
2
 for minor roads) than in the north (0.05 km/km

2
 for major roads 

and 0.04 km/km
2
 for minor roads). 
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4.2.2 Data collection 

 We used global positioning systems (GPS) collars (Lotek models 2200L and 3300L, and 

Telonics TGW-4680) to monitor 49 female caribou between 2004-2010 . We programmed these 

collars to record a location every 1, 2, 3, 4 and 6 hours. Females were preferred for this study as 

their behaviour can strongly influence calf survival (Barten et al. 2001). Individuals were 

captured periodically using net-gunning to retrieve data, change batteries or remove collars. 

Collars were also retrieved following failure or death of an individual. Canadian Animal Welfare 

Committee approved captures and manipulations of study animals (certificate #36-08-67).  

We used the linear segments connecting two consecutive GPS locations (i.e. steps; Fortin 

et al. 2005) to investigate the influence of anthropogenic disturbances on the sequential 

movements of individual caribou. In order to obtain uniform data, only time steps of 4 hours 

were retained for the analysis, other time fixes being subsampled or removed from the dataset. 

The analysis was divided between six annual periods of biological significance for caribou 

ecology: spring (15 April – 14 May), calving (15 May – 14 June), summer (15 June – 14 

September), rut (15 September – 14 November), early winter (15 November – 21 February) and 

late winter (22 February – 14 April). Furthermore, as daily behaviour may also vary (e.g. 

Bjormeraas et al. 2011), each period was further divided between day, dusk/dawn and night 

times (CNRC 2011), resulting in a total of 18 different periods analyzed.  

Steps were related to a series of features obtained from digitized ecoforest maps provided 

by the Ministère des Ressources naturelles et de la Faune du Québec and updated each year with 

new natural and anthropogenic disturbances. Minimum mapping unit size was 4 ha for forested 

polygons and 2 ha for non-forested areas (e.g., water bodies, bogs). For this analysis, disturbance 

features included clearcut and road types (Table 4.1). Clearcuts were categorized according to 
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elapsed time since logging: 0-5 year-old clearcuts, 6-20 year-old clearcuts and established 

regenerating stands (21-40 years old), whereas roads were divided according to their width: 

major (i.e. primary and secondary roads respectively 35 and 30 m wide) and minor roads 

(tertiary and quaternary roads respectively 25 and 20 m wide). No paved roads are found in the 

study area. The proportion of steps located in each type of clearcut was measured to evaluate the 

relative probability of individuals moving through clearcuts and a quadratic term was included in 

order to test for non-linear responses. Relative probability of individuals crossing roads and 

clearcut edges was evaluated using the number of crossings on each step. The landscape context 

in which females were moving was also suspected to have an influence on caribou behaviour 

(e.g. higher probability of crossings when density is greater). The density of clearcut edges and 

roads was therefore evaluated in buffers around the beginning of each step (i.e. same density for 

observed and random steps). Buffer size was determined by a constant radius equal to the median 

of the periodical step length distributions (i.e. spring: 205 m; calving: 132 m; summer: 245 m; 

rut: 222 m; early winter: 125 m; late winter: 127 m). We used the median as the step length 

distribution was characterized by a power law distribution. Consequently, less importance was 

attributed to the longer and less frequent steps and thus more likely to represent distances 

traveled by females within the time step analyzed. Topography variables were also included (i.e. 

the mean elevation on the step and the difference between the elevation at the end and the 

beginning of the step) in the analysis as altitude and slope have been found to be important 

features influencing the movements of caribou and other ungulates (Leblond et al. 2010; Skarin 

et al. 2010). 
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Table 4.1 – Description of variables considered in the conditional logistic regressions explaining 

caribou relative movement probabilities in relation to disturbances for 49 female caribou in 

Saguenay – Lac-Saint-Jean (Québec, Canada) between 2004 and 2010.  

Group Variable Description 

Elevation  ElevVar Elevation difference between beginning and end of the step 

(Elev) ElevMoy Mean step elevation 

Clearcuts 

(Cut) 

Cut05 Proportion of 0-5 year-old clearcuts under the step 

Cut05
2
 Quadratic term for Cut05 

Cut620 Proportion of 6-20 year-old clearcuts under the step 

Cut620
2
 Quadratic term for Cut620 

Regen Proportion of regenerating stands (21-40 years old) under the step 

Regen
2
 Quadratic term for Regen 

Cross_Edge 

(Cr_Ed) 

Cross05 Number of 0-5 year-old clearcut edge crossings 

Cross620 Number of 6-20 year-old clearcut edge crossings 

CrossRGN Number of  regenerating stand (21-40 years old) edge crossings 

Dens05 Density of 0-5 year-old clearcut edge around the beginning of the step 

 

Dens620 Density of 0-5 year-old clearcut edge around the beginning of the step 

DensRGN Density of 0-5 year-old clearcut edge around the beginning of the step 

Cross_Roads 

(Cr_Rd) 

Roa12 Number of major road (classes 1 and 2) crossings 

Roa34 Number of minor road (classes 3 and 4) crossings 

Dens12 Density of major roads around the beginning of the step 

Dens34 Density of minor roads around the beginning of the step 
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Dist_Roads 

(Dt_Rd) 

Dvar12 

Difference of distance to closest major road between the beginning and 

end of the step 

Dvar34 

Difference of distance to closest minor road between the beginning and 

end of the step 

 

 

4.2.3 Statistical analysis 

The impacts of forest management features on relative movement probabilities were 

evaluated using a Step Selection Function (SSF; Fortin et al. 2005). This method compares use-

availability through a conditional logistic regression: 

                          ), (1) 

where β1 to βn are coefficients estimated by the regression and x1 to xn are relevant 

predictors, with higher   values indicating greater odds of being selected by an individual. Each 

observed step was paired with ten random steps originating from the same location and drawn 

for each individual from unique distributions of step lengths and turning angles (i.e. angle 

between previous and subsequent location) of all other individuals in order to avoid 

autocorrelation. Habitat availability thus changed between each step and reflected features 

immediately available to individuals (Leblond et al. 2010). Individuals and years were included 

as random factors in the analysis, controlling for uneven sample sizes between years and inter-

individual variability, while minimizing autocorrelation in the analysis (Duchesne et al. 2010). 

Autocorrelation between successive steps was further considered by including robust Sandwich 

estimates of the covariance matrix, which divides observed steps in independent clusters and 
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performs the analysis on the clusters rather than on individual steps (see Fortin et al. 2005 for 

details).  

 A series of candidate models, representing competing hypotheses, was ranked from most to 

least parsimonious with the quasi-likelihood under independence criterion (QIC), which 

performs well with conditional logistic regressions (Craiu et al. 2008). As density measurements 

were the same for both observed and random steps – and therefore not applicable as fixed factors 

in a logistic regression – the densities were used solely as interaction terms in the analysis and 

we tested models with and without interactions to consider the landscape context (Leblond et al. 

2011). Model fit was assessed for each model using a k-fold cross validation, which ranks each 

stratum using the logit values predicted by the logistic regression, with best predictions 

associated with higher values (see Leblond et al. 2010). A Spearman rank correlation (rs) was 

calculated between the ranks and the sum of observed steps in each rank, with strong correlations 

indicating a propensity for observed steps to be ranked higher. Spearman ranks were averaged 

over 10 iterations in which model parameters were evaluated using a random 80% of the strata 

and tested against the remaining 20%. Since most models included in the analysis are nested, 

inference was based on models with a ∆QIC ≤ 6 (Richards et al. 2011). Informative variables 

explaining relative movement probabilities were then assessed using a confidence interval of 

0.95 (i.e. when the 95%CI did not include zero).  

 

4.3 Results 

A total of 49 female caribou tracked from 1 to 6 years provided 137 867 observed steps 

(2657±2280 per individual) with numbers varying between each period (7824±3404 per period). 

Based on the QIC ranking, the best models explaining caribou step selection differed depending 
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on the time of the year and the day (Table 4.2). The global model was the most parsimonious for 

11 of the periods considered, while the global model without interaction prevailed for 4 periods. 

The remaining 3 periods were best explained by either the proportion of clearcuts under the step 

or the number of clearcut edge crossings, and partial models that ranked close to the global 

model (∆QIC ≤ 6) almost always contained the clearcut variables, suggesting that clearcuts held 

the most weight in explaining caribou step selection within those periods (Table 4.2). Validation 

of best models indicated a high predictive power (rs range from 0.74 ± 0.13 to 0.97±0.03; Table 

4.2).   

 

Table 4.2 – Candidate model ranking based on QIC for each period of the day and the year. 

Models were evaluated using conditional logistic regressions. Only models with ∆QIC ≤ 6 are 

presented. Number of parameter (K), log-likelihood (LL), difference in QIC values (ΔQIC) and 

weight (ωi) are given. Model performance was assessed with a Spearman rank correlation 

(rs±sd). Elevation variables were included in all models tested and models without interactions 

(i.e. densities of clearcuts edges and roads) are identified with a *.  

Day 

Period Model structure K LL ∆QIC ωi rs 

Spring 

Cut 13 -14549.50 0.00 0.87 0.93±0.05 

Cut+Cr_Ed 19 -14542.11 5.05 0.07 0.96±0.01 

Cut+Cr_Ed* 16 -14546.77 5.75 0.05 0.95±0.03 

Calving Cr_Rd+Dt_Rd+Cut+Cr_Ed 25 -16094.06 0.00 1.00 0.97±0.03 

Summer Cr_Rd+Dt_Rd+Cut+Cr_Ed* 20 -36134.74 0.00 0.56 0.85±0.08 
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Cr_Rd+Dt_Rd+Cut+Cr_Ed 25 -36126.20 0.46 0.44 0.88±0.05 

Rut 

Cr_Rd+Dt_Rd+Cut+Cr_Ed* 20 -14549.51 0.00 0.73 0.74±0.13 

Cr_Rd+Dt_Rd+Cut+Cr_Ed 25 -14543.53 2.04 0.27 0.84±0.06 

Early winter Cr_Rd+Dt_Rd+Cut+Cr_Ed 25 -15931.48 0.00 1.00 0.79±0.15 

Late winter Cr_Rd+Dt_Rd+Cut+Cr_Ed 25 -15459.15 0.00 1.00 0.92±0.06 

Dusk / dawn 

Spring 

Cr_Rd+Dt_Rd+Cut+Cr_Ed* 20 -12116.71 0.00 0.65 0.95±0.03 

Cr_Rd+Dt_Rd+Cut+Cr_Ed 25 -12113.68 2.47 0.19 0.93±0.02 

Cut+Cr_Ed* 16 -12124.81 5.03 0.05 0.94±0.03 

 

Cut 13 -12128.91 5.26 0.05 0.93±0.06 

 

Cut+Cr_Ed 19 -12122.66 5.74 0.04 0.92±0.03 

Calving 

Cr_Rd+Dt_Rd+Cut+Cr_Ed 25 -11280.86 0.00 0.60 0.88±0.10 

Cr_Ed 13 -11303.92 1.31 0.31 0.88±0.07 

Cr_Rd+Dt_Rd+Cut+Cr_Ed* 20 -11288.89 4.26 0.07 0.91±0.04 

Summer Cr_Rd+Dt_Rd+Cut+Cr_Ed 25 -27962.37 0.00 1.00 0.93±0.05 

Rut Cr_Rd+Dt_Rd+Cut+Cr_Ed 25 -16811.61 0.00 0.99 0.91±0.03 

Early winter Cr_Rd+Dt_Rd+Cut+Cr_Ed 25 -24922.37 0.00 0.55 0.82±0.06 

Cr_Rd+Dt_Rd 13 -24936.03 0.58 0.41 0.85±0.09 

Cr_Rd+Dt_Rd+Cut+Cr_Ed* 20 -24936.74 5.77 0.03 0.85±0.08 

Late winter Cr_Rd+Dt_Rd+Cut+Cr_Ed 25 -15355.73 0.00 1.00 0.92±0.04 

Night 

Spring Cr_Rd+Dt_Rd+Cut+Cr_Ed* 20 -9679.09 0.00 0.68 0.85±0.07 
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Cr_Rd+Dt_Rd+Cut+Cr_Ed 25 -9675.25 1.72 0.29 0.85±0.10 

Calving Cr_Ed 13 -6202.93 0.00 0.97 0.75±0.13 

Summer 

Cut+Cr_Ed 19 -20418.01 0.00 0.64 0.93±0.03 

Cut+Cr_Ed* 16 -20422.24 1.38 0.32 0.93±0.04 

Rut Cr_Rd+Dt_Rd+Cut+Cr_Ed 25 -19502.55 0.00 0.61 0.84±0.14 

 

Cr_Rd+Dt_Rd+Cut+Cr_Ed* 20 -19508.29 1.15 0.34 0.83±0.07 

Early winter Cr_Rd+Dt_Rd+Cut+Cr_Ed 25 -34463.18 0.00 1.00 0.93±0.05 

Late winter Cr_Rd+Dt_Rd+Cut+Cr_Ed 25 -15891.95 0.00 1.00 0.91±0.06 

 

      

   

 

4.3.1 Impacts of clearcuts and roads on step selection 

Caribou mostly avoided clearcuts, using 0-5 year-old clearcuts only in combination with 

other habitat types and distinctly increasing avoidance as stands aged (Figure 4.1; Tables 4.3-4.4-

4.5). Our models predict an increase in the relative probability of caribou occurrence when steps 

are entirely located in regenerating stands. Yet the frequency distributions highlight that such 

steps have a low probability of being observed within our system (Figure 1). We thus attributed 

more weight to the left side of the curves when interpreting our results. Response to clearcuts 

also differed between annual periods. The relative probability of caribou using disturbances 

gradually increased in late winter and spring until summer and rut, to subsequently decrease 

markedly in the winter periods (Figure 4.1). Caribou avoided disturbances prominently during 

the day throughout all annual periods. Certain types of disturbances (e.g. regenerating stands) 

and annual periods (e.g. calving and winter periods) were nonetheless marked with increased 

avoidance during dusk/dawn and at night, although to a lesser extent (Figure 4.1; Tables 4.3-4.4-
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4.5). Typically, however, female avoidance of disturbances decreased during dusk/dawn and at 

night, with females sometimes increasing their use instead (e.g. 6-20 year-old clearcuts during 

summer and rut).  Females generally avoided crossing major roads, except during the rut at night. 

Furthermore, individuals were likely to move toward major roads only during the winter periods 

and spring at night and dusk/dawn. Conversely, caribou preferentially crossed minor roads for all 

periods except for the rut and early winter, while individuals nonetheless tended to move away 

from minor roads throughout all periods. 

 

 

4.3.2. Impacts of landscape context on step selection 

The local context in which females moved influenced their decision to cross clearcut 

edges and roads for most of the periods considered. Females typically avoided crossing clearcut 

edges and roads at low densities, yet subsequently increased their crossing rates over what would 

be randomly expected as densities around the beginning of the step increased (Figure 4.2a, c, d). 

In certain instances, however, females rather elected to avoid crossing clearcut edges and roads 

regardless of the density in which they were located (Figure 4.2b) Context was almost always 

important for major and minor roads, while it seemed to be important mostly during spring, 

calving and the winter periods for clearcut edges (Tables 4.3-4.4-4.5). 
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Table 4.3 – Coefficient estimates () and 95% confidence intervals (95%CI) of the independent variables of the most parsimonious 

models explaining caribou movements for 49 females in Saguenay – Lac-Saint-Jean (Québec, Canada) between 2004 and 2010 during 

daytime. Informative variables were identified with the 95%CI (i.e. not overlapping zero) when available (if not, noted as ‘n/a’) and 

are identified in bold letters. 

Variable 

Day 

Spring Calving Summer Rut Early winter Late winter 

ß±95%CI* ß±95%CI* ß±95%CI* ß±95%CI* ß±95%CI* ß±95%CI* 

ElevVar -0.0066±0.0014 -0.0069±0.0016 -0.0007±0.0011 -0.0049±0.0016 -0.0015±0.0019 -0.0094±0.0019 

ElevMoy 0.0024±0.0024 0.0041±0.0027 0.0075±0.0019 0.0030±0.0028 0.0055±0.0033 0.0043±0.0032 

Cut05 2.3675±1.0132 1.2350±0.7574 0.9892±0.4715 0.3857±0.8385 1.9528±1.8162 1.1719±1.4769 

Cut05
2
 -2.4745±1.0020 -1.4895±0.7478 -0.8088±0.4614 -0.4003±0.8518 -2.7657±1.9438 -1.9630±1.5867 

Cut620 0.1359±0.4462 1.3224±0.6743 0.1064±0.4417 -0.6521±0.6360 -0.7579±0.5280 -0.1725±0.5638 

Cut620
2
 -0.0391±0.3974 -1.7738±0.6633 -0.1536±0.4267 0.7224±0.5881 0.0450±0.5180 -0.4828±0.5478 

Regen -1.4788±0.6993 -2.1337±0.7400 -0.7955±0.4649 -1.2733±0.8271 -0.7271±0.7766 -1.2693±0.8079 

Regen
2
 1.4014±0.7390 1.9552±0.7717 0.9527±0.4736 0.9661±0.8799 0.5685±0.8243 0.8866±0.8549 

Cross05 n/a 0.0016±0.0334 0.0444±0.0172 0.0005±0.0301 -0.0848±0.0982 0.0115±0.0559 
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Cross05*Dens05 n/a 0.0058±0.0048 n/a n/a 0.0162±0.0113 0.0030±0.0112 

Cross620 n/a -0.0525±0.0346 -0.0001±0.0163 0.0391±0.0203 0.0152±0.0287 0.0084±0.0276 

Cross620*Dens620 n/a 0.0059±0.0040 n/a n/a 0.0003±0.0030 -0.0042±0.0039 

CrossRGN n/a -0.0435±0.0406 -0.0286±0.0232 -0.0527±0.0392 -0.0124±0.0473 -0.0531±0.0465 

CrossRGN*DensRGN n/a 0.0044±0.0057 n/a n/a -0.0014±0.0079 -0.0005±0.0080 

Roa12 n/a 0.1171±0.2190 -0.1763±0.1991 -0.2593±0.2701 -0.3855±0.3170 -0.7106±0.3602 

Roa12*Dens12 n/a 0.3360±0.5787 n/a n/a 0.1157±0.1625 0.5426±0.5203 

Roa34 n/a 0.0357±0.0368 0.0267±0.0203 0.0177±0.0313 -0.0168±0.0409 0.0570±0.0322 

Roa34*Dens34 n/a 0.0201±0.0077 n/a n/a 0.0168±0.0077 0.0151±0.0068 

Dvar12 n/a -0.0277±0.0402 -0.0558±0.0270 -0.0395±0.0367 -0.0058±0.0462 -0.0248±0.0479 

Dvar34 n/a -0.1490±0.0620 -0.0859±0.0409 -0.1300±0.0537 -0.1101±0.0710 -0.0649±0.0742 

*Confidence intervals can be obtained by adding and subtracting the ±95%CI value to its associated β value. 
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Table 4.4 – Coefficient estimates () and 95% confidence intervals (95%CI) of the independent variables of the most parsimonious 

models explaining caribou movements for 49 females in Saguenay – Lac-Saint-Jean (Québec, Canada) between 2004 and 2010 during 

dusk/dawn. Informative variables were identified with the 95%CI (i.e. not overlapping zero) when available (if not, noted as ‘n/a’) 

and are identified in bold letters. 

Variable 

Dusk/dawn 

Spring Calving Summer Rut Early winter Late winter 

ß±95%CI* ß±95%CI* ß±95%CI* ß±95%CI* ß±95%CI* ß±95%CI* 

ElevVar -0.0072±0.0018 -0.0053±0.0025 -0.0008±0.0012 -0.0060±0.0018 -0.0034±0.0017 -0.0071±0.0021 

ElevMoy 0.0031±0.0032 0.0065±0.0044 0.0092±0.0021 0.0042±0.0031 0.0037±0.0030 0.0063±0.0036 

Cut05 1.0586±1.2864 0.8482±1.0360 0.4518±0.5463 0.2154±0.8591 1.1805±1.4161 1.9011±1.4682 

Cut05
2
 -1.2631±1.2689 -1.0137±1.0176 -0.2717±0.5416 -0.0335±0.8464 -1.8990±1.5536 -1.7948±1.5099 

Cut620 0.0515±0.5787 0.8371±0.8610 0.6203±0.5324 -0.3162±0.6419 -0.1706±0.4214 -0.2224±0.5629 

Cut620
2
 0.1545±0.5265 -0.9217±0.8369 -0.3321±0.4959 0.8097±0.5864 -0.1304±0.4147 -0.0537±0.5483 

Regen -1.0068±0.9710 -1.0825±0.9731 0.1601±0.5133 -0.5691±0.8290 -1.1154±0.6555 -1.2405±0.8813 

Regen
2
 0.8723±1.0093 0.9758±0.9913 0.0481±0.5464 0.6502±0.8763 0.8859±0.6738 1.0146±0.9382 

Cross05 0.0379±0.0451 0.0485±0.0631 0.0206±0.0320 -0.0251±0.0504 0.0168±0.0557 -0.0262±0.0517 
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Cross05*Dens05 n/a 0.0039±0.0078 0.0096±0.0054 0.0067±0.0072 0.0029±0.0083 0.0017±0.0133 

Cross620 -0.0050±0.0232 0.0060±0.0539 -0.0085±0.0379 0.0448±0.0367 0.0131±0.0272 -0.0194±0.0304 

Cross620*Dens620 n/a 0.0053±0.0062 -0.0059±0.0054 -0.0043±0.0054 -0.0005±0.0031 0.0016±0.0041 

CrossRGN -0.0880±0.0652 -0.1742±0.0998 -0.0747±0.0392 -0.1409±0.0678 -0.0526±0.0513 -0.2021±0.0759 

CrossRGN*DensRGN n/a 0.0169±0.0125 0.0064±0.0069 0.0110±0.0135 0.0044±0.0064 0.0125±0.0105 

Roa12 0.0089±0.2271 -0.0349±0.4704 -0.2255±0.2783 0.0235±0.3098 -0.0712±0.2242 -0.3492±0.3668 

Roa12*Dens12 n/a -0.2070±0.4483 0.1763±0.2523 -0.4128±0.5183 0.0641±0.1103 0.4890±0.3816 

Roa34 0.0267±0.0332 0.0818±0.0628 0.0255±0.0356 -0.0127±0.0484 -0.0054±0.0354 0.1249±0.0342 

Roa34*Dens34 n/a 0.0160±0.0151 0.0018±0.0109 0.0203±0.0131 0.0179±0.0071 0.0072±0.0063 

Dvar12 0.0914±0.0517 -0.0670±0.0761 -0.0732±0.0324 -0.0409±0.0450 0.0346±0.0439 -0.0016±0.0593 

Dvar34 -0.0777±0.0815 -0.1696±0.1107 -0.1636±0.0478 -0.0925±0.0642 -0.1284±0.0664 -0.0600±0.0922 

*Confidence intervals can be obtained by adding and subtracting the ±95%CI value to its associated β value. 
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Table 4.5 – Coefficient estimates () and 95% confidence intervals (95%CI) of the independent variables of the most parsimonious 

models explaining caribou movements for 49 females in Saguenay – Lac-Saint-Jean (Québec, Canada) between 2004 and 2010 at 

night. Informative variables were identified with the 95%CI (i.e. not overlapping zero) when available (if not, noted as ‘n/a’) and are 

identified in bold letters. 

Variable 

Night 

Spring Calving Summer Rut Early winter Late winter 

ß±95%CI* ß±95%CI* ß±95%CI* ß±95%CI* ß±95%CI* ß±95%CI* 

ElevVar -0.0102±0.0033 -0.0086±0.0052 -0.0041±0.0023 -0.0055±0.0029 -0.0050±0.0019 -0.0097±0.0029 

ElevMoy 0.0039±0.0059 0.0039±0.0090 0.0095±0.0041 0.0060±0.0052 0.0032±0.0034 0.0056±0.0051 

Cut05 1.2378±1.5403 n/a 0.6482±0.7445 0.9528±0.9577 1.2933±1.3812 2.6660±1.6883 

Cut05
2
 -1.2213±1.4777 n/a -0.2734±0.7139 -0.6522±0.9238 -1.6411±1.4286 -2.8620±1.7355 

Cut620 -0.1977±0.7111 n/a 0.0425±0.7690 -0.7297±0.7053 -0.0571±0.3763 -0.6579±0.6106 

Cut620
2
 0.3239±0.6602 n/a 0.7780±0.7063 1.0794±0.6454 -0.3348±0.3698 0.3919±0.5894 

Regen -1.2164±1.2973 n/a -1.3725±0.7122 -0.9673±0.9149 -0.6440±0.6337 -0.0650±0.9651 

Regen
2
 1.2743±1.3013 n/a 1.3992±0.7031 0.9266±0.9348 0.4053±0.6393 -0.3721±0.9928 
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Cross05 0.0022±0.0748 -0.0524±0.1268 -0.0379±0.0662 -0.0439±0.0772 -0.0432±0.0904 -0.0350±0.0639 

Cross05*Dens05 n/a 0.0215±0.0171 0.0131±0.0105 0.0056±0.0122 -0.0015±0.0144 0.0231±0.0143 

Cross620 -0.0414±0.0426 0.0065±0.0629 -0.0489±0.0745 0.0490±0.0514 0.0225±0.0274 0.0009±0.0367 

Cross620*Dens620 n/a 0.0104±0.0103 -0.0041±0.0107 -0.0009±0.0079 -0.0010±0.0027 0.0061±0.0043 

CrossRGN -0.1524±0.1031 -0.2606±0.1889 -0.0803±0.0738 -0.1040±0.0967 -0.1960±0.0745 -0.3086±0.1235 

CrossRGN*DensRGN n/a 0.0231±0.0284 0.0075±0.0109 0.0196±0.0160 0.0157±0.0067 0.0123±0.0168 

Roa12 -0.1137±0.5139 n/a n/a -0.2058±0.5734 -0.0141±0.2459 -1.0641±0.6100 

Roa12*Dens12 n/a n/a n/a 0.2284±0.4220 -0.1039±0.1593 0.3172±0.3305 

Roa34 0.0981±0.0549 n/a n/a -0.0720±0.0717 -0.0364±0.0434 0.1152±0.0472 

Roa34*Dens34 n/a n/a n/a 0.0138±0.0134 0.0220±0.0078 0.0082±0.0095 

Dvar12 0.0813±0.0989 n/a n/a 0.0583±0.0780 0.0900±0.0499 0.1064±0.0809 

Dvar34 -0.2057±0.1557 n/a n/a -0.1775±0.1060 -0.1501±0.0681 -0.1219±0.1164 

*Confidence intervals can be obtained by adding and subtracting the ±95%CI value to its associated β value. 
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Figure 4.1 –Relative probability of caribou occurrence as a function of a) the proportion of the step in 0-5 years old clearcuts, b) the 

proportion of the step in 6-20 years old clearcuts and c) the proportion of the step in regenerating stands for all significant periods. 
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With each graph is associated the annual frequency distribution of the proportion of the step in each clearcut types. The      values 

obtained through the logistic regression equations were standardized between 0 and 1 to obtain relative probabilities of observing 

caribou steps. 
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Figure 4.2 – Number of a) 0-5 years old clearcut edge crossings during calving at night, b) 6-20 

years old clearcut edge crossings during summer at dusk/dawn, c) regenerating stand edge 

crossings during calving at dusk/dawn and d) minor road crossings during early winter at 

dusk/dawn as a function of their respective edge density around the beginning of the step. The 

figures were obtained by fitting a curve on the mean number of crossings per steps for individual 

caribou within intervals of 0.5 km/km
2 

ranging from 0 to the maximum observed density values. 

We chose four representative examples of typical significant interactions obtained through our 

analysis (see Tables 4.3-4.4-4.5).   

  



79 

 

4.4 Discussion 

Caribou are thought to orient their habitat use hierarchically to minimize the impacts of the 

most limiting factors (e.g. predation) at coarse spatiotemporal scales in order to attend to 

biological requirements at finer scales (Rettie and Messier 2000). Certain populations 

nevertheless inhabit heavily altered habitats where the representation of habitats associated with 

greater uncertainty is such that individuals are also confronted with limiting factors at finer 

scales (Briand et al. 2009). Under this scenario, we investigated the impacts of disturbances on 

the movements of woodland caribou in highly managed landscapes. We found that although 

disturbances were essentially avoided, females nonetheless regularly moved through or in close 

proximity to roads and clearcuts, modifying their behaviour when doing so. Our results also 

further demonstrate that individuals modulate their response to disturbances on a daily and 

annual basis. This potentially reflects an ability to adapt behavioural decisions temporally by 

compromising between risk avoidance and forage requirements in an attempt to optimize their 

respective efficiency (Godvick et al. 2009; Bjørneraas et al. 2011). 

   

4.4.1 Daily and annual response to disturbances 

Female caribou did not respond consistently to the different types of clearcuts. Females were 

gradually less likely to be found within clearcuts as stands aged, suggesting an evolution of 

perceived risk associated with those habitats. Moose – and incidentally wolf – densities increase 

once cutovers are regenerating (Courtois et al. 1998; Nielsen et al. 2005). Risks of encounter 

with predators may thus be lower in younger clearcuts (Houle et al. 2010), increasing the 

likelihood of caribou using those habitats (Leblond et al. 2011). Those habitats are nonetheless 

associated with increased human and predator activity (Burton et al. 1999), which may explain 
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that females preferred using young clearcuts when other habitats were locally available. 

Furthermore, as regeneration will inevitably replace young disturbances, any gain will be 

temporary until those habitats are colonized by predators and their alternative preys.  

Females also modified their response to disturbances annually. Avoidance of disturbances 

seemed to be most acute during periods of greater vulnerability for calves (i.e. calving) and 

adults (i.e. early and late winter).While calves are very susceptible to opportunistic black bear 

predation the first weeks following birth (Bastille-Rousseau et al. 2011; Pinard et al. 2012), 

adults seem to be more vulnerable to gray wolf predation during the winter as their diet becomes 

primarily ungulate-based (Peterson and Ciucci 2003). Specifically, wolves were found to seek 

caribou habitat during dusk/dawn and at night (Tremblay-Gendron 2012). Clearcut edges and 

roads also impacted caribou in periods of greater vulnerability. Edges are known to alter species 

interactions (Fagan et al. 1999) and may be particularly significant for caribou as edges are used 

by moose and wolves as a consequence (e.g. Bergman et al. 2006; Dussault et al. 2006; Gurarie 

et al. 2011). The boundary between natural and disturbed habitats could thus be particularly 

hazardous for caribou and may explain the distinct avoidance of regenerating stand edges. 

Likewise, roads and edges might be used by alternative prey species for wolves and bears, the 

predators themselves and humans potentially leading to greater predation risk or disturbance for 

caribou (Whittington et al. 2011). Wolves in particular increase their use of roads during winter, 

especially at dusk/dawn and at night (Tremblay-Gendron 2012), and encounter rates between 

caribou and wolves have been found to increase during that period (Whittington et al. 2011). As 

these linear features are associated with increased mortality risk, an increase in their density 

could have important impacts on the survival of female and especially of calves, ultimately 

leading to population level consequences.  
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Conversely, individual caribou increased their use of open habitats mainly during the spring, 

summer and rut periods, along with a slight increase in the use of 0-5 year-old clearcuts during 

late winter. This suggests that forage requirements may in part prevail over risk avoidance during 

those periods. Foraging opportunities become scarcer as winter progresses (Gaillard et al. 2000; 

Johnson et al. 2001), which is followed by periods of low body condition in spring and summer, 

especially for parturient females (Barten et al. 2001). Individuals must therefore adapt their 

foraging activities during those critical periods. The abundance in shrub cover found in clearcuts 

in our system has been previously discussed as providing complementary alternative forage for 

caribou in winter (see Briand et al. 2009). The green plants available in clearcuts during the 

snow-free periods could also be used in a similar fashion (Schaefer and Mahoney 2007; Godvik 

et al. 2009) Additionally, females tended to move towards major roads at night through the 

winter periods. This response may be expected from individuals accessing open habitats in our 

study area as they are close to roads, a pattern also observed for reindeer in Sweeden relative to 

trails (Skarin et al. 2010). Those habitats are nonetheless associated with higher risk and high 

adult mortality rates have been observed for multiple populations during those periods 

(Whittington et al. 2011).  

Interestingly, female caribou predominantly avoided disturbances during the day. As 

discussed, although disturbances may offer advantages to caribou during certain annual periods, 

they are nonetheless associated with increased predator presence and thus higher mortality risks, 

especially during the day (Dussault et al. 2005). On the other hand, crepuscular and nocturnal 

activities of females were not as heavily affected by disturbances, with individuals increasing 

their use of 6-20 year-old during the summer and the rut. These daily variations in response to 

disturbances may then reflect a decrease in perceived risk by female caribou. Such a daily pattern 
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of habitat use is also supported by comparable time-dependant habitat use demonstrated for other 

ungulate species (e.g. Godvik et al. 2009; Lykkja et al. 2009; Bjørneraas et al. 2011).  

 

4.4.2 Influence of local context on movements 

The landscape context was found to impact caribou movements, especially during periods of 

greater vulnerability. Females preferentially increasing or decreasing their crossing rates suggest 

a vigilance-relocation response potentially related to the risk associated with local disturbance 

levels. As individuals typically avoid crossing clearcut edges and roads, a local increase in the 

presence of such features can be expected to impose greater alertness on individuals (Zollner and 

Lima 2005). Increased crossing rates may thus reflect relocation movements in an effort to 

access more secure areas, increasing the likelihood of edge and road crossings (Ims et al. 1993). 

Conversely, the decrease could reflect a state of heightened vigilance compelling individuals to 

remain within risky habitats for a longer period of time (Zollner and Lima 2005). While 

increased use of edges and roads could lead to greater predation risk (e.g. Whittington et al. 

2011; Gurarie et al. 2011), females that are decreasing their crossing rates may become trapped 

in sub-optimal habitats that may compel individuals to spend less time foraging in favor of a 

heightened anti-predation behaviour (Frid and Dill 2002). Such a response could have dire 

consequences for individual survival (Gill et al. 2001) and seems analogous to responses 

exhibited at coarser scales, with individuals decreasing space use as disturbance levels increase 

over certain thresholds (see Beauchesne et al. submitted). Alongside further local increases in 

disturbances, females trapped in sub-optimal habitats could ultimately be forced to spend more 

time foraging and less time assessing risk as they become energetically depleted (Zollner and 

Lima 2005).  
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4.5 Conclusions and recommendations 

We demonstrated that woodland caribou modify their fine-scale movements temporally in 

response to disturbances, potentially balancing daily and annual forage requirements with risk 

avoidance. We also highlighted the importance of considering daily periods when studying 

behaviour. The failure to consider daily patterns of habitat use may obscure such behaviours like 

diurnal avoidance and nocturnal use through data aggregation, and potentially fail to detect 

relevant ecological processes. Additionally, we found that individuals modified their movements 

when locally confronted with higher disturbance levels, ultimately compelling them to use more 

risky habitats. Combined, these two findings seem to indicate that increasing disturbance levels 

in the boreal forest are compelling caribou to respond to limiting factors at gradually finer scales 

and potentially traps them in suboptimal habitats. We know that black bear predation on calves 

can be particularly problematic in areas of intensive forest management (see Pinard et al. 2012). 

Additionally, current management practices may increase local caribou densities and co-

occurrence probabilities with wolves during the winter period (Courbin et al. 2009; Lesmerises 

2011), alongside a potential adaptation of wolves to hunt caribou during those periods 

(Tremblay-Gendron 2012). It thus seems that predation risk and anthropogenic disturbance may 

combine and impact individual vulnerability, ultimately affecting populations through decreases 

in reproductive output and survival (Frid and Dill, 2002). Proportions of clearcuts within our 

study area (Portneuf: 41%; Piraube: 15%) being within range of established levels known to 

impose detrimental physiological stress (>36%; Renaud 2012) and decreased recruitment rates 

(>35%; Environment Canada 2011), further increases in disturbance levels are likely to 

jeopardize long-term caribou persistence for future generations. 
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Chapter 5. General conclusion 

There exists a vast body of literature obtained through extensive research programs 

conducted over the past decades that allows for a thorough understanding of caribou behaviour 

across multiple spatiotemporal scales and on many facets of its ecology. Most caribou 

populations are now declining across much of their North-American distribution (Vors and 

Boyce, 2009) and there seems to be a strong correlation between observed declines and the 

northward advancement of forest harvesting activities (Schaefer 2003; Vors et al. 2007). 

Woodland caribou thus strives to remain elusive in a landscape gradually transformed by forest 

harvesting into prime habitats for alternative prey species and associated predators (Bergerud and 

Page; 1987; Schaefer 2003). In an effort to avoid altering the boreal forest too profoundly for 

caribou persistence, recent reports have discussed levels of disturbances over which populations 

are deemed unlikely to be self-sustaining and proposed thresholds of population tolerance that 

should not be exceeded in the boreal forest (Sorensen et al. 2008; Environment Canada 2011).  

Long-term, extensive impacts on populations should however result from short-term 

behavioural shifts at the individual level (see Johnson and St-Laurent 2011). It is under this 

framework that we decided to study the behaviour of woodland caribou evolving in heavily 

managed habitats and our results support numerous studies demonstrating that individuals alter 

their behaviour when confronted with anthropogenic disturbances (e.g. Dyer et al. 2002; 

Schaefer and Mahoney 2007; Hins et al. 2009). Still, while most studies conducted on caribou 

behaviour focused on habitat selection, the goal of this study was to investigate its underlying 

process, movement, in the hope of filling some gaps in the understanding of behavioural 

response to anthropogenic disturbances.  
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5.1 Summary of findings 

Under the premise of individual movements emulating patterns of habitat selection observed 

hierarchically across multiple spatiotemporal scales, this study was able expand the knowledge 

on how caribou – and potentially other species – modify their movements in response to the 

presence of disturbances in their habitat. Using home-range size as a proxy of individual space 

use, we demonstrated that caribou firstly responded to increased amounts of disturbances 

through home-range expansion, reflecting a capacity to cope with low levels of disturbances. 

However, individuals modified their response when confronted with high levels of disturbances, 

instead contracting their home-ranges, suggesting limitations to the behavioural plasticity of 

caribou evolving in heavily managed landscapes. Such behavioural shifts could compel 

individuals to use sub-optimal habitats leading to lower survival probabilities and ultimately to 

population level consequences. Furthermore, the results obtained through this analysis highlight 

that disturbance levels currently observed in the boreal forest can already effectively compel 

caribou to shift their behaviour, which could be highly detrimental to the long-term persistence 

of caribou in the boreal forest.  

The shifts in behaviour at the home-range scale causing caribou to remain in highly altered 

habitats led us to believe that individual coarse-scale segregation from disturbances may thus be 

deficient in highly managed areas. Individuals could then be compelled to move in close 

proximity to disturbances at gradually finer scales (Rettie and Messier 2000). We thus tested 

whether individual caribou respond to disturbances at the fine-scale. We found that although 

females mostly avoided disturbances when moving through their home range, they nevertheless 

regularly came in contact with them. Individuals modulated their movements temporally on an 

annual and daily basis in response to anthropogenic disturbances. Females avoided disturbances 
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during periods of higher vulnerability (calving, early and late winter) during the day. Conversely, 

they decreased avoidance behaviour or even increased their use of disturbances during periods of 

higher energy requirements (spring, summer and rut) during dusk/dawn and night. It therefore 

seems that individuals balance their biological requirements with risk avoidance by 

predominantly avoiding habitats associated with higher uncertainty when perceived risk is higher 

and conversely using them when risk is lower. Furthermore, the context in which individuals 

moved also affected relative probabilities of females crossing clearcut edges and roads. This 

suggested either relocation movemetns to other – and potentially more suitable – habitats or 

increased vigilance that may cause individuals to remain in locally altered habitats for a longer 

period of time. This latter response, which is analogous to that exhibited at coarse-scale through 

home-range contraction, could cause individuals to remain in risky habitats for longer periods 

even at finer scales. This could also disrupt the daily time budget allocated to biological activities 

(Zollner and Lima 2005), while increasing mortality risks. Ultimately, individuals could either 

increase or decrease their time spent assessing risk, resulting in less time spent on biological 

activities or increased vulnerability due to insufficient risk assessment (Sih 1992; Zollner and 

Lima 2005). Furthermore, this study also highlights the importance of considering daily 

processes when studying behaviour as differential responses could be obscured through data 

aggregation.  

 

5.2 Management implications 

Our results suggest that forest harvesting and predation risk combine to impact the survival 

of caribou by increasing risk perceived by females (e.g. presence of human, predators and 

alternative prey species) and increasing predator densities. An increase of both could easily 
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render coarse-scale risk avoidance strategies deficient, especially when individuals are forced to 

occupy risky habitats through the majority of their annual distribution. Caribou may be unable to 

avoid predators efficiently in such habitats with respect to fortuitous predation on calves by black 

bears (Bastille-Rousseau et al. 2011; Pinard et al. 2011) and similarities between caribou and 

wolf fine-scale habitat use during winter (Chapter 4; Tremblay-Gendron 2012). Under such a 

scenario, remaining elusive at the landscape scale becomes much more vital to caribou survival, 

a strategy compromised under a heavy disturbance regime which exacerbates caribou 

vulnerability (e.g. Renaud 2012). The non-linear and contextual responses found in Chapters 3 

and 4 are critical in understanding the limits in individual plasticity to cope with disturbances 

and suggest that current disturbance levels may already be well above thresholds of natural 

adaptability. As a result, individuals could be forced into a secondary behavioural state from 

which a backwards transition is highly uncertain (Johnson submitted). This also seems supported 

by levels of disturbances observed in our study area (Portneuf: 41%; Piraube: 15%) falling 

within a range known to impose lasting physiological stress on individuals (>36%; Renaud 2012) 

and decreased recruitment rates leading to a decrease in the likelihood of populations being self-

sustaining in the future (>35%; Envionment Canada 2011). 

While most conservation policies are concerned with threats to survival and aim at 

quantifying how species are impacted by human activities from a population standpoint, focusing 

on populations rather than behaviour could lead to reactive management initiatives. In order to 

observe population level alteration due to natural or anthropogenic factors, a chain of events 

moving through the whole biological scales of impact must first typically occur (see Johnson and 

St-Laurent 2001). In essence, there would be a time lag between the initiation of stressing factors 

and population level consequences as stressors gradually work up the scale of biological impacts 
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to affect populations. Focusing solely on the population level thus ignores the mechanisms 

underlying population change and potentially overlooks crucial events leading to their demise. 

Proactive management plans focusing rather on behaviour could therefore be highly valuable in 

order to prevent the chain of events leading to population consequences, or at the very least help 

avoid behavioural shifts as limits of natural adaptability are reached. It has been argued that 

behavioural changes with respect to increasing human activities can only be meaningful from a 

conservation perspective when there are clear threats to population persistence (Gill and 

Sutherland, 2000; Gill et al. 2001). The same authors also argued that anthropogenic activities 

may not translate into population level consequences for species that possess the ability to avoid 

humans as they may access other suitable habitats (also see Ydenberg and Dill, 1986). Rather, 

species that do not relocate may in fact be much more vulnerable to anthropogenic activities 

since they might be constrained within suboptimal habitats caused by unsuccessful relocation to 

other suitable habitats, possibly due to their nonexistence. The increasing disturbance levels 

noted in the boreal forest have been found, through this study, to impose such constraints on 

individuals across multiple spatiotemporal scales. It is thus reasonable to assume that they must 

also impact populations.  

Several suggestions for management strategies could be developed from the results obtained 

in this project:  

 

- The thresholds found in Chapter 3 (table 3.4) could help in the development of proactive 

management plans by providing known levels of disturbances over which individuals 

modify their behaviour in a way that could result in population level consequences. It is 

however important that those thresholds be considered under the actual values reported. 



90 

 

As defined in Chapter 3, thresholds presented correspond to levels over which a sudden 

or gradual shift in behavioural response is observed, rather than a regulatory limit 

(Johnson submitted). As such, these thresholds should never be reached – which includes 

the lower limit of their associated uncertainty – as well as never be approached.  

 

- The representation of disturbances known to influence female caribou movements most 

drastically should be used to set management goals.  

- The representation of regenerating stands in the range of woodland caribou should 

be limited, as females acutely avoided those disturbances across all scales 

considered. This suggests that management strategies should take into account the 

~20 years time lag needed for cutblocks to elicit their maximum impact on 

caribou. This strategy would also limit predator and prey densities, thereby further 

support caribou survival by decreasing the impact of apparent competition.  

- The density of major roads should be limited in the boreal forest as they exert a 

significant impact on caribou space use in particular.  

- Reconverting minor roads to natural habitats should also be considered (see 

Nellemann et al. 2010). Although minor roads were absent from our coarse-scale 

analysis, female movements were shown to be impacted by the density of minor 

roads throughout most periods. Their density in our study area seems to be 

important for caribou to efficiently avoid them and increases in predator-prey 

encounters may occur more frequently and impact caribou survival.  
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- The threshold values considered should correspond to periods of higher biological 

vulnerability or sensitivity to disturbance stimuli. The calving and winter periods are of 

significant importance for calf and adult survival and were characterized by marked 

avoidance across spatiotemporal scales. The representation of disturbances found in the 

landscape should therefore not exceed levels over which females modify their behaviour.  

 

- Considering the need for forest harvesting activities, operations should be restricted to 

periods of lower vulnerability and decreased avoidance behaviour. Female behaviour 

seemed to be less impacted during the summer period across all spatiotemporal scales 

considered and activities restricted to the summer period could limit the effect of 

disturbance stimuli generated by human presence in caribou habitat. 

 

Such additional management strategies could certainly assist in securing woodland caribou 

persistence in the North-American boreal forest while keeping forest harvesting activities from 

exerting pressures that are not sustainable for caribou populations.  
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