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Abstract Understanding the links among plant genotype,
plant chemistry, and food selection by vertebrate herbivores
is critical to assess the role of herbivores in the evolution of
plant secondary chemistry. Some specialized vertebrate
herbivores have been shown to select plants differentially
according to plant genotype, but examples from generalists,
which constitute the vast majority of vertebrate herbivores,
are few, especially in natural conditions. We examined the
relationship between the North American porcupine (Ereth-
izon dorsatum), a generalist mammalian herbivore, and
clonal trembling aspen (Populus tremuloides), a preferred
food source of porcupines. We determined preference for
certain aspen trees through visual examination of porcupine
climbing scars left on tree bark, and through a controlled
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feeding experiment. We used genetic and biochemical anal-
yses to link the behavioral archives (climbing scars) left by
porcupines on aspen trunks to the clonal structure and
chemical composition of trees. We show that two phenolic
glycosides (tremulacin and salicortin), which are under a
high degree of genetic control and thus vary in concentra-
tion across clones, are the chemical variables that most
influence (deter) feeding choices by porcupines. Using
behavioral archives left by a wild herbivore on a natural
stand of plants thus allowed us to demonstrate that a gener-
alist vertebrate herbivore can choose plants according to
their clonal structure and genetically based chemical
composition. Our results contribute to extending previous
findings obtained with generalist herbivores studied in con-
trolled conditions, and with specialist herbivores studied in
the field.

Keywords Phenolic glycoside - Mammalian herbivory -
Selective herbivory - Plant—animal interactions -
Defensive chemistry

Introduction

Demonstration of the evolutionary role played by herbi-
vores with respect to plant secondary metabolites is a multi-
step process that involves concepts from genetics, chemistry,
ethology, and ecology (Bryant et al. 1991). A number of
studies have attempted to link plant genotype, plant
chemistry, and food selection by invertebrate herbivores
(e.g., Mauricio and Rausher 1997; Fornoni et al. 2004;
Donaldson and Lindroth 2007), but parallel efforts with ver-
tebrate herbivores are less abundant (e.g., Snyder 1992; Jia
et al. 1997; Pusenius et al. 2002; Vourc’h et al. 2002; Bailey
etal. 2004; Laitinen et al. 2004; O’Reilly-Wapstra et al.
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2004). Furthermore, very few of these attempts were made
on wild herbivore populations feeding on natural plant pop-
ulations. For example, Jia etal. (1997), Pusenius et al.
(2002), Laitinen et al. (2004) and O’Reilly-Wapstra et al.
(2004) used plants removed from their original population
to show that vertebrate herbivores can select among plant
genotypes differing in phytochemistry. Whereas the experi-
mental approach bears obvious advantages in its ability to
detect cause—effect relationships, the ecological and evolu-
tionary relevance of experimental results depends on how
the preferences expressed by herbivores translate into natu-
ral conditions, where the relative frequency of plant geno-
types can differ from experimental situations and where
animals face multiple trade-offs as they must avoid preda-
tors, parasites, and weather extremes, and engage in social
interactions (Moore and Foley 2005).

Interestingly, the most demonstrative studies linking intra-
specific variation in plant chemistry to food selection by ver-
tebrate herbivores studied in natural conditions often involve
specialist herbivores, such as Abert’s squirrels (Sciurus
aberti; Snyder 1992) or koala (Phascolarctus cinereus;
Moore and Foley 2005). It is unclear whether or not this refl-
ects an intrinsic difference in the ability of specialists versus
generalists to finely tune plant selection at the intraspecific
level, although generalists could potentially be under less

directional selection to adapt to a particular set of plant sec-
ondary metabolites. Understanding food choice by generalist
herbivores is important because they are the main consumers
of plants in the vast majority of ecosystems (Freeland 1991).
We studied a generalist herbivore, the North American
porcupine (Erethizon dorsatum), originating from South
America and now ranging as far north as the Canadian tun-
dra. Porcupines feed at ground level on a large variety of
herbs, forbs, fruits, and flowers, and climb various conifer-
ous and deciduous trees to eat buds, catkins, bark, twigs,
and leaves (Roze 1989). Their feeding regime varies widely
according to seasons and geographical areas (Roze 1989).
Porcupines feed partly on leaves of trembling aspen
(Populus tremuloides) in summer (Plate 1; Morin et al.
2005; Berteaux et al. 2007). Aspens have the largest distri-
bution of any North American deciduous tree species and
show striking genetic variation (Lindroth and Hwang
1996). This genetic variation is evidenced as visually
apparent differences among clones, including variation in
morphology, autumn coloration, and timing of bud-break
and leaf senescence (Lindroth and Hwang 1996 and refer-
ences therein). Trembling aspens produce phenolic-based
secondary metabolites (phenolic glycosides and condensed
tannins) in abundance, and these are well-known for deter-
ring aspen-feeding insects (Lindroth 2000) and some

Plate 1 Variation in utilization of trembling aspen by North Ameri-
can porcupines in Parc National du Bic, Quebec, Canada. Top Aspen
avoided by porcupines. Bottom Aspen heavily used by porcupines.
Each panel shows the canopy of a clone (left), a close up of a single
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branch (center), and a close up of the bark of a tree trunk (right). Note
the defoliated branch and cut stems on the lower middle panel, and the
scars left by porcupine claws on aspen bark on the lower right panel.
Photo credits: Dominique Berteaux
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mammals (Basey et al. 1990; Wooley et al. 2008). Variabil-
ity in phenolic glycosides is potentially high across clones
but low within clones, and concentrations of phenolic
glycosides are influenced strongly by clonal genetics
(Hemming and Lindroth 1995; Osier and Lindroth 2001;
Donaldson and Lindroth 2007; Lindroth et al. 2007). Natural
aspen stands typically contain multiple trees of the same
genotype, as well as multiple units (clones) of differing
genetic composition (Barnes 1969a; Wall 1971; Mock et al.
2008).

The hard claws of porcupines leave long-lasting marks
on the thin bark of aspens, and the build-up of these marks
through the years constitutes a collection of historical
records (a natural archive) of past herbivory pressure on
individual trees (Plate 1). We used this opportunity to
investigate porcupine food selection on trembling aspen.
We tested the hypothesis that phytochemical variation
among clones would affect food selection by porcupines.
More specifically, we predicted that aspen clones would
differ in their concentrations of phenolic glycosides, and
that porcupines studied in natural conditions would bias
their food choice toward clones with lower concentrations
of these secondary metabolites.

In supporting these predictions, and based on the known
importance of genetics in the phytochemical variation of
aspens, we show the ability of a wild generalist herbivore to
recognize variation in aspen chemistry (and thus most prob-
ably variation in aspen genetics), and to translate this rec-
ognition into biased food selection at the individual tree
level.

Methods
Study site

We worked from 6 June to 25 August 2002, and from 5
May to 5 July 2003, in Parc National du Bic (48°21'N,
68°45'W), Quebec, Canada, at the southern limit of the
boreal forest. Details on the topography, vegetation, and
climate of the study area, and on the demography and natu-
ral history of the porcupine population are available in
Klvana et al. (2004) and Berteaux et al. (2005).

We performed field work in a 2.2 ha patch of forest dom-
inated by trembling aspens, of relatively uniform topogra-
phy, and heavily used by porcupines. We tagged all aspen
trees with a minimum circumference of 20 cm (n = 577).
We excluded trees smaller than this from the study, due to a
distinct absence of climbing scars and to the developmental
variation in the phytochemistry of aspens under 10 years of
age (basal circumference 10-15cm) (Donaldson et al.
2006). We measured the circumference at 1.30 m of each
tree, and determined its spatial position (1 m) using a land

survey theodolite (Leica TC 605/L, Leica Geosystems, St.
Gallen, Switzerland).

Identification of aspen clones

We delineated clones using the field techniques described
in Barnes (1969b) and Kemperman (1977). In May 2003,
we examined all trees daily for bud break, flowering, and
leaf flush. We recorded the phenology of these events and
determined the sex of flowers. We also examined tree bark
for differences in color, texture, and susceptibility to frost
cracks and disease, and characterized stem and branch form
(straight, undulated or twisted), branching habit (upwards,
downwards or horizontal), and stem fork (presence or
absence; if present, height of lowest fork). Variation in
these traits is usually sufficient for delineating clones due to
the heritable basis of these phenological and morphological
characteristics, providing that multiple traits are used in
the analysis (Gom and Rood 1999 and references therein).
Similar morphometric techniques employed in related
research proved accurate in over 90% of clone identifica-
tions, when compared with molecular (microsatellite) tech-
niques (R.L.L., unpublished data).

Using these qualitative characteristics of aspen trees,
two observers independently clumped trees into clones
according to the observed spatial variation in tree character-
istics. Observers classified 81% (n =467) of trees into the
same set of 16 clones. We excluded from subsequent analy-
ses the remaining 110 trees that were not classified simi-
larly by the two independent observers. Amplification of
microsatellite markers (using four to ten loci as necessary
for unique characterization of individual clones) from the
DNA of 24 trees (three trees taken randomly from each of
eight presumed clones) confirmed the field delineation [see
Sect. S1 in the electronic supplementary material (ESM) for
laboratory techniques].

Determination of tree use by porcupines

We first evaluated climbing scars left by porcupines on
aspen bark to quantify the intensity of use of individual
aspen trees by porcupines. We then used feeding trials on
captive porcupines to verify that the variability in use of
trees by wild porcupines corresponded to differential food
selection (see section Linking tree use to food selection).
Scratches observed on aspen bark were attributed to porcu-
pine climbing based on two criteria: they were oriented
diagonally on the tree trunk (due to the position of the fore-
paws when climbing) and they were clumped in groups
(multiple scars are left simultaneously when several nails of
a single paw puncture the bark). No other animal in the
study area could have generated such climbing scars (see
S2, Fig. S2.1, for a picture of a fresh climbing scar).
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We quantified the density of climbing scars on individ-
ual trees using two 64 cm* quadrats located on areas of the
trunk considered visually to contain the highest number of
porcupine scars (S2, Fig. S2.2). We adopted this stratified
sampling strategy (one stratum) rather than a random sam-
pling, because preliminary data showed that it was the most
efficient at capturing the among-tree variability in scar den-
sity (scars were highly clumped on tree trunks). We calcu-
lated the average number of scars per quadrat for each tree.
Climbing scars remain on tree trunks for many years (we
first observed fresh climbing scars in May 2000, and these
scars were still clearly identifiable by April 2009; D.B.,
unpublished data). Because older trees may have registered
porcupine climbing scars for a longer period of time, we
performed a regression analysis to remove any effect
caused by tree size. We considered residual values as an
index of tree use independent of tree age and size (S3).
Hereafter, “climbing scar index” refers to the average num-
ber of scars per quadrat per tree, while “tree use index”
refers to residual values of the climbing scar index once the
effect of tree size has been removed. We assumed that these
indices reflected long term herbivory pressure, but this
could not be demonstrated. Scars were produced by an
unknown number of porcupines (but see Discussion). Bark
texture was appropriate to register claw marks on 510 trees
(frost cracks on the bark of 67 trees may have led to an
underestimation of the number of claw marks).

Linking tree use to food selection

We captured five porcupines from 25 May to 10 June 2003
(four adult males and one juvenile female) in the area sur-
rounding the study site, and housed them separately in
cages (1.5m x 1.5m x 1.5 m) to perform feeding trials.
Each cage contained a rubber pipe, which provided shelter
to the porcupine. Cages were placed in a forest stand close
to the capture locations and porcupines were released at
their site of capture immediately after finishing the experi-
ment (on average, 19 days after their initial capture). Cap-
ture and handling techniques were approved by the Comité
de protection des animaux de 1’Université du Québec a
Rimouski (permit # CPA12-02-06) and the Société de la
Faune et des Parcs, Gouvernement du Québec (permit
#20030401-001-01-S-F).

We conducted the experiment over 12 consecutive
nights from 16 June to 28 June 2003. Each night, we offered
the five porcupines a choice between leaves coming from
lightly versus highly scarred aspens. Each evening, we
selected one bundle from each of two trees belonging to
two clones (trees were thus never compared within clones).
Leaves from the two trees did not differ in any obvious
characteristic such as density, size, shape or color. The
lightly and highly scarred trees had an average tree use
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index of —7.2 + 2.2 (range: —10.0 to —2.5) and 19.5 £ 12.8
(range: 5.6-41.3), respectively. We tied three or four 50—
80 cm long terminal branches from individual trees into
equal size bundles containing a similar quantity of leaves
(fresh mass = ca. 250 g). We placed bundles in cages so
that they were equally accessible to porcupines. Once bun-
dles were placed in cages, porcupines were continuously
observed for 1 h, after which the percentage of leaves eaten
in each bundle was estimated visually. Visual estimation
was performed without removing bundles form the cage, so
as not to disturb the porcupines. Unfortunately visual esti-
mations were not calibrated against a more direct method
such as weighing. The observer (B.D.) was blind as to
which bundle came from a lightly versus highly scarred
aspen. The positions of bundles relative to each other were
random. Additional estimates were also performed 1.5, 4,
and 24 h after bundles were placed in cages. In addition to
the aspen leaves offered for the experiment, porcupines
were fed daily with dandelions, apples, grass, clover, and
aspen leaves from trees not used in this study, in order to
ensure that their nutritional requirements were met. We
therefore used 24 trees (one tree per “treatment” X 2
“treatments” x 12 replicates) in the experiment, and each
porcupine went simultaneously through the same set of tests.

Chemistry of aspen

In July 2003, we sampled for chemical analysis leaves from
252 aspen trees representing the diversity of genotypes and
phenotypes present on our study site. Our sampling included
all trees from clones (n = 13) containing <20 trees, and 50%
(randomly selected) of the trees from clones (n=23)
containing >20 trees. We measured the content of nitrogen,
carbohydrates (starch and sugar), condensed tannins, and
phenolic glycosides (tremulacin and salicortin) in order to
assess the quality of leaves to porcupines. The leaf sampling
methodology and chemical analyses are detailed in S4.

Data analysis

Many trees had never been climbed by porcupines, so that
our climbing scar index had numerous null values. We
therefore investigated the influence of clonal structure on
use of trees by porcupines by comparing the observed to
expected (average) proportion of scarred trees in each
clone, using a Chi square test.

To analyze data from the feeding experiment, we first
calculated the mean value of the four estimates (at 1, 1.5, 4,
and 24 h) of leaf consumption obtained every night for each
porcupine and each leaf bundle. We then tested the effects
of treatment (lightly vs highly scarred trees), tree identity,
and individual porcupine on leaf consumption using a
three-way mixed-model ANOVA (Sokal and Rohlf 1981).
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We lumped salicortin and tremulacin (hereafter called
“phenolic glycosides”) together in all analyses of aspen
chemical composition, because these two constituents are
structurally related and were strongly correlated (> = 0.781,
n =252). We compared concentrations of nitrogen, carbohy-
drates, condensed tannins, and phenolic glycosides between
scarred and unscarred trees using a MANOVA. We then cal-
culated the percentage of variation in our tree use index that
could be attributed to concentrations of condensed tannins
and phenolic glycosides (the only two significant variables
in the MANOVA) using multiple regression analysis.
Finally, we investigated the contribution of the clonal struc-
ture of the aspen stand to the heterogeneity of the chemical
composition of aspen trees using a series of ANOVAs with
chemical variables as dependent variables.

We checked normality of data before performing para-
metric tests. We normalized data using log-transforms
when the assumption of normality was not met. We per-
formed analyses using SAS version 9.1 (SAS 2002); results
are expressed as mean £ SE.

Results

Does clonal structure of the aspen stand influence
visitation of trees by porcupines?

Of the 577 aspen trees identified in our study site, 467
could be assigned to a particular clone and 510 had bark
suitable to register porcupine claw marks, while 400 satis-
fied both conditions. Among these 400 trees, 234 (59%)
showed signs of porcupine climbing. The climbing scar
index of these 234 visited trees ranged from 1 to 49 and
averaged 12.3 £ 10.6.

We assigned the 400 trees described above to 16 differ-
ent clones. Within clones, the number of trees suitable to
register porcupine claw marks varied from 5 to 81
(average = 25.0 £ 20.6 trees). The percentage of trees used
by porcupines within clones also varied greatly, from no
tree used to 97% used (average = 48.9% = 7.2). Scarred
trees were thus not distributed evenly among clones
(X, =138.03, df =15, P <0.001, Fig. 1), and the probabil-
ity of a given aspen tree to be visited by porcupines
depended on the clone to which it belonged. We conclude
that clonal structure of the aspen stand influenced visitation
of trees by porcupines.

Does visitation rate of trees reflect porcupine feeding
preferences?

Captive porcupines preferred leaves sampled from highly
scarred trees over leaves coming from trees with fewer
scars (Fy 5, = 8.92, P = 0.0068, Fig. 2). In 10 of 12 feeding

19 20 5 38 25 29 81 13 10 9 15 64 17 8 5 33

Number of trees

g h i j k I mn o p
Clone

Fig. 1 Observed (black bars) and expected (white bars) numbers of
trees bearing porcupine climbing scars in 16 trembling aspen clones
studied in Parc National du Bic, Quebec, Canada. Expected numbers
were generated under the null hypothesis that porcupines climbed
trees randomly. Observed and expected numbers refer to the 400
trees with readable bark that we identified to the clonal level using
field and laboratory techniques. Numbers above bars indicate sample
sizes (e.g. number of trees with readable bark that were assigned to
each clone)

trials, porcupines consumed a greater percentage of leaves
from highly scarred trees (Fig.2). Percent leaf matter
consumed varied significantly among porcupines (Fgs =
24,55, P <0.0001) and trees (F,, gg = 5,45, P < 0.0001), but
no interaction was significant. We conclude that variations
in our tree use index did reflect food preferences of
porcupines, and thus differential herbivory pressure from
porcupines.

% leaf matter consumed

10 11 12 avg

Tree pairs

Fig. 2 Average consumption (%) of trembling aspen leaves offered to
five captive porcupines during a 12-night feeding experiment in June
2003. Every night, a different pair of trees (numbers 1-12) containing
a highly scarred (black bars) and a lightly scarred (white bars) tree was
used as a source of leaves for the experiment. Quantity of leaves
offered to porcupines was ca. 250 g fresh material per tree. Error bars
SE
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Fig. 3 Average (£SE) content of five chemical variables (N Nitrogen,
CT condensed tannins, PG phenolics glycosides, Su sugar, St starch)
measured in trembling aspen leaves from a 2.2-ha study site in Parc
National du Bic, Quebec, Canada. Chemical content of 111 aspen trees
bearing porcupine scars (black bars) is compared to chemical content
of 141 trees showing no scars (white bars). ***P < 0.01

Does chemical composition of a tree influence
its preference by porcupines?

There were no significant differences in the concentrations
of nitrogen (F,50=0.32, P=0.57), sugar (F s, =0.84,
P =0.36), and starch (F|,s50=144, P=0.23) between
scarred and unscarred trees (Fig. 3). However, concentra-
tions of condensed tannins were 15% lower in unscarred
trees relative to scarred trees (F 50 =19.14, P <0.001),
whereas concentrations of phenolic glycosides were 63%
greater in unscarred trees relative to scarred trees
(Fy 250 = 44.93, P <0.001) (Fig. 3).

A multiple regression analysis, using only tannins and
phenolic glycosides shows a significant relation between
our tree use index and concentrations of the two classes of
compounds (R2 =0.19, P<0.001, n=252, Tree use
index = 1.04 tannins — 7.68 phenolic glycosides + 1.0385).
Beta coefficients of the regression equation show that the
effect of phenolic glycosides is considerably stronger than
that of condensed tannins. We conclude that differential use
of aspen trees by porcupines can be attributed partially to
phytochemical variation among trees.

Does clonal structure of the aspen stand influence
the chemical composition of trees?

Examination of the 252 trees analyzed for chemical compo-
sition shows significant differences in chemical variables
among clones. The largest variations were found in con-
densed tannins and phenolic glycosides, which varied
across clones by as much as 283% and 392%, respectively.
By comparison, maximum differences found between
clones for the other compounds were 129% (nitrogen),
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163% (sugar), and 221% (starch). Descriptive chemistry of
clones (as well as that of the sub-sample of trees used for
the feeding experiment) and statistical testing of variations
among clones are given in S5, Table S5.1. We conclude
that the clonal structure of studied aspen trees did influence
their chemical composition.

Discussion

We found that porcupines select aspen leaves with lower
concentrations of phenolic glycosides and higher concen-
trations of condensed tannins. The deterrent effects of trem-
ulacin and salicortin are well established. These chemicals
reduce the performance of gypsy moth (Lymantria dispar
L.) and forest tent caterpillar (Malacosoma disstria Hbn)
larvae (Hemming and Lindroth 1995; Osier and Lindroth
2004) and high concentrations of phenolic glycosides
reduce browsing of aspen by elk (Bailey et al. 2007).

In contrast to our findings, the association between tan-
nins and mammalian herbivory is usually negative (Downs
etal. 2003; Marsh et al. 2003; Bailey et al. 2004). Some
positive associations have been found between aspen-feed-
ing insects and the foliar concentration of condensed tan-
nins, but they were likely due to the negative covariance
between phenolic glycosides and condensed tannins, rather
than to a preference for high concentrations of condensed
tannins (Hemming and Lindroth 1995). The same chemical
covariance likely explains apparent selection for high-tan-
nin trees in this study. Alternatively, the positive correla-
tion between porcupine herbivory and condensed tannins
may be a result, rather than a cause, of porcupine food
choice. Peters and Constabel (2002) and Osier and Lindroth
(2001, 2004) showed an increase in tannin concentration in
trembling aspen following wounding or defoliation.

Concentrations of phenolic glycosides in aspen are
determined strongly genetically, but weakly environmen-
tally (i.e., genetically canalized; Osier and Lindroth 2001,
2004, 2006; Donaldson and Lindroth 2007). In our study
plot, 16 clones grew within a relatively uniform 2.2-ha
patch of forest containing no obvious variation in soil char-
acteristics, water availability, or light accessibility. In addi-
tion, most clones were intertwined and did not form
isolated clumps of trees. Yet concentrations in phenolic
glycosides markedly differed among clones. Similarly,
Lindroth and Hwang (1996) reported marked variation in
foliar concentrations of tremulacin (5.9-fold) and salicortin
(10.3-fold) across 31 clones in Michigan. Some strong
developmental changes in chemistry do occur in trembling
aspen (Donaldson et al. 2006), but ontogenetic variation in
chemistry occurs mostly before trees reach the 6- to 10-year
age class, and is thus irrelevant to this study (see Methods).
Finally, levels of phenolic glycosides were unlikely to have
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been affected by prior porcupine feeding. Phenolic glyco-
sides are not induced in damaged leaves (Osier and Lind-
roth 2001) or in leaves produced a year after defoliation
(Osier and Lindroth 2004). Levels are elevated in new
leaves produced from lateral buds immediately following
extreme defoliation (Stevens and Lindroth 2005; Donald-
son and Lindroth 2008) but such was not the case for feed-
ing by porcupines.

Our pen experiment involved only five porcupines, and
food choice studies performed on wild herbivorous mam-
mals typically face a large inter-individual variability in diet
preferences (Berteaux etal. 1998; Brathen etal. 2004).
Although our sample size was sufficient to allow rejection of
the null hypothesis of no difference between control and
treatment, confidence in our results might have been
increased by using more individuals. This, however, must be
weighed against the ethical costs of restraining the move-
ments of wild mammals in small pens for several weeks.

We have some evidence that scars were not due to a very
small number of individuals. Our study plot is part of a
larger study area where a long-term study involving marked
individuals is ongoing (Berteaux et al. 2005). From 2000 to
2002, 46 individuals were observed within 200 m of the
center of our 2.2 ha study plot (D.B., unpublished data).
Many of these individuals probably fed in the study plot. In
addition, climbing scars remain on tree trunks for many
years (see Methods), so that some unknown individuals that
were alive before 2000 could also have produced some
scars.

North American porcupines can climb trees to feed, to
rest in a safe place, or to escape predators (Roze 1989). The
number of scars on aspen trunks would be unrelated to the
intensity of herbivory if feeding was not the main reason
why porcupines climbed aspens. In our study area, Morin
et al. (2005) found that aspen was the main food source of
porcupines whereas porcupines used rock dens and eastern
white cedars as resting places. Typically they spent the
night in one or a few aspens and the day in a rock den or
cedar tree. This shows that porcupines climb aspens to feed,
not to rest. Porcupines do sometimes climb aspens to
escape terrestrial predators (D.B., unpublished data). When
doing so, however, they climb the first available tree, so
that scars generated by predator avoidance could not have
biased use of aspen clones.

Influences of herbivory on plant fitness must be demon-
strated before an herbivore is considered to be a selective
agent, and a considerable amount of work on plant life his-
tory is needed to quantify the selection gradient imposed by
herbivory. Heavy defoliation of aspen trees does suppress
plant growth (Osier and Lindroth 2004; Stevens et al.
2007), therefore porcupine browsing may have negative
effects on individual trees. However, the asexual reproduc-
tion of P. tremuloides makes it difficult to measure the

effects of herbivory on individual fitness, because the
growth pattern of clonal units buffers negative impacts,
spreads the risk of death, and retards selection (Jelinski and
Cheliak 1992). Finding a direct link between single-species
herbivory and plant fitness is further confounded by the
interacting effects of multiple herbivores and other vari-
ables in the ecosystem. For example, in our study plot the
effects of aspen-feeding insects need to be separated to
obtain an accurate measure of the impacts of porcupine her-
bivory on trembling aspens.

Our findings echo those of Heiska et al. (2007), who
reported that vole (Microtus agrestis) feeding seemed to be
highly affected by willow (Salix myrsinifolia) cultivation
method and plant genotype. Similarly, Snyder and Linhart
(1997) showed that when porcupines fed on phloem of Pon-
derosa pine (Pinus ponderosa) during winter months, eaten
trees differed biochemically (lower concentrations of the
monoterpene limonene) and genetically (allele frequencies
at two of nine polymorphic loci) from adjacent trees that
had not been fed upon.

Interestingly, when Snyder and Linhart (1997) compared
the feeding patterns of porcupines with those of Abert’s
squirrels, a specialist feeding primarily on the phloem of
Ponderosa pine, the level of feeding selectivity was found
to be far less pronounced in the porcupine. More generally,
many studies have reported that generalist feeders show a
limited amount of preference in their choice of diet (e.g.
Ben-Shahar 1991). This assertion could even appear as a
logical tautology. However, our study shows that a general-
ist species feeding on a large range of plant species and
plant parts can still show selectivity at the level of individ-
ual plants within a species.

In conclusion, our study suggests that a generalist verte-
brate herbivore has adapted the ability to discriminate
among individual plants within a clonal species, in a situa-
tion where the discriminating factor (leaf concentration in
phenolic glycosides) had previously been shown to be
largely of genetic origin. Our demonstration would have
been stronger if the number of porcupines producing the
scars was known, and if we had been able to associate
climbing scars directly to herbivory. Yet our findings are
particularly valuable given the important ecological impact
of generalist vertebrate herbivores on most plant communi-
ties. Much work remains, however, to determine whether
vertebrate herbivores have been sufficiently important play-
ers in the evolutionary past to shape the phytochemistry of
plants (Moore and Foley 2005).
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