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Kubelka et al. (Reports, 9 November 2018, p. 680) claim that climate change has disrupted patterns of 
nest predation in shorebirds. They report that predation rates have increased since the 1950s, especially 
in the Arctic. We describe methodological problems with their analyses and argue that there is no solid 
statistical support for their claims. 
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Climate change affects organisms in a variety of ways (1–4), 
including through changes in interactions between species. 
Kubelka et al. (5) reported that a specific type of trophic 
interaction, namely depredation of shorebird nests, has in-
creased globally over the past 70 years. The authors state 
that their results are “consistent with climate-induced shifts 
in predator-prey relationships.” They also claim that the 
historical perception of a latitudinal gradient in nest preda-
tion, with the highest rates in the tropics, “has been recently 
reversed in the Northern Hemisphere, most notably in the 
Arctic.” They conclude that “the Arctic now represents an 
extensive ecological trap for migrating birds, with a predict-
ed negative impact on their global population dynamics.” 
These conclusions have far-reaching implications for evolu-
tionary and population ecology, as well as for shorebird 
conservation and related policy decisions (6). Therefore, 
such claims require robust evidence, strongly supported by 
the data. Here, we dispute this evidence. 

First, Kubelka et al. graphically show nonlinear, spatio-
temporal variation in predation rates (their figure 2, A and 
B, and figure 3) and suggest that in recent years, predation 
has strongly increased in North temperate and especially 
Arctic regions, but less so in other areas. However, they only 
statistically test for linear changes in predation rates over 
time for all regions combined, and for each geographical 
region (their table S2) or period (before and after 2000; 
their table S6) separately. To substantiate their conclusions, 
they should have presented statistical evidence for an inter-
action between region/latitude and year/period on preda-
tion rate. Moreover, their analyses control for spatial 
autocorrelation but fail to model non-independence of data 
from the same site (pseudo-replication). 

Using the data of Kubelka et al., we ran a set of mixed-
effect models, structurally reflecting their results depicted in 
their figure 2, A and B, and figure 3, but including location 
as a random factor (Table 1) (7). These analyses show (i) that 
much of the variation in nest predation rate is explained by 
study site (>60%, compared to species: <5%), implying a 
reduced effective sample size; (ii) that all regions—except 
the South temperate—show similar predation rates; and (iii) 
that nest predation rates increase over time similarly across 
all geographical areas (Fig. 1, A to F). Linear models without 
interaction terms are much better supported than nonlinear 
models with interactions (Table 1), indicating that predation 
rates in the Arctic are not increasing any faster than else-
where (Fig. 1, B, C, E, and F). Thus, these results provide no 
evidence that the rate at which nest predation increased 
over time varies geographically. 

Second, for the period under study, not only the climate 
has changed, but also the research methods. Hence, it re-
mains unclear whether nest predation rates have indeed 
increased over time and if so, why. Kubelka et al. used the 

Mayfield method (8, 9) to calculate daily nest predation 
rates as the number of depredated nests divided by “expo-
sure” [the total time (in days) all nests were observed]. 
However, 59% of the 237 populations they used lacked in-
formation on exposure. They circumvented this problem by 
estimating exposure based on the description of nest search 
intensity in the respective studies (10). The key question is 
when nests were found. Kubelka et al. decided that in 114 
populations, nests were found such that 60% of the nesting 
period (egg laying and incubation combined) was “ob-
served” (B = 0.6; nests searched once or twice a week). For 
14 populations they used B = 0.9 (nests searched daily or 
found just after laying), and for 11 populations they used B = 
0.5 (assuming nests found midway during the nesting peri-
od). However, the choice of B value remains subjective (7), 
and for 38% of the 128 populations where Kubelka et al. 
used B > 0.5, we found no information in the reference to 
suggest that this was appropriate. This issue is not trivial, 
because using higher B values (i.e., assuming that nests were 
found earlier than they actually were) overestimates expo-
sure and hence underestimates nest predation rates. 

The proportion of populations with estimated exposure 
declines over time (7), particularly after 2000 and especially 
in the Arctic (Fig. 1G). The timing of the decline coincides 
with Kubelka et al.’s definition of historic and recent data 
and with the suggested exponential rise of predation in the 
Arctic (their figure 2, A and B, and figure 3, A and B). In-
deed, the results are sensitive to variation in estimated ex-
posure during the “historic period” (Fig. 1H). Although 
Kubelka et al. correctly state that the estimated and true 
predation rates are highly correlated [using studies with 
quantitative information on exposure; see supplementary 
materials of (5)], the true rate is typically underestimated 
for the higher B values they used (Fig. 1I). Given these is-
sues, the main result—the apparent increase in daily nest 
predation rate over time, especially in the Arctic—may simp-
ly be an artifact. To further assess the robustness of the 
change in predation rate over time, we used only popula-
tions where nest predation rates were calculated on the ba-
sis of known exposure (N = 98). These analyses reduced the 
effect of year by ~50% (7) and resulted in weak, nonsignifi-
cant linear trends (Fig. 1, C and F), which suggests that 
there is little evidence for changing predation rates. 

Finally, we note that nest searching effort and frequen-
cy of nest visits likely increased in recent years as research-
ers learned how best to obtain accurate estimates of nest 
survival (11–13). Researchers also intensified their activities 
(e.g., capturing adults to band, tag, and collect samples and 
placing monitoring equipment near nests, which may in-
crease the predation rate) (14, 15). Thus, an increase in the 
quality of data reporting as well as increased research activ-
ity around nests may have further induced a time-
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dependent bias in estimates with an underestimation of 
true predation rates in the historic data (see above), and 
perhaps an overestimation in the contemporary data. 

In summary, reanalysis of the data of Kubelka et al., 
evaluation of the quality and interpretation of the published 
data used, and considerations about changes in research 
methods over the past 70 years lead us to conclude that 
there is no robust evidence for a global disruption of nest 
predation rates due to climate change. We argue that their 
claim that the Arctic has become an ecological trap for 
breeding shorebirds is untenable. 
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Table 1. Comparison of models explaining spatiotemporal variation in daily nest predation rate using the original 
Kubelka et al. data. Letters and results in bold refer to panels in Fig. 1; A and D are the models reflecting figures 2A 
and 3A in (5). Each model is fitted with maximum likelihood and controlled for number of nests in a given population 
(ln-transformed) and for multiple populations at a given site or for a given species, using site and species as random 
intercepts. Daily predation rate (dependent variable) was ln-transformed after adding 0.01 [following (5)]. Predictors 
are Year (mean year of the study), Hemisphere (Northern versus Southern), Latitude (degrees), Geographical Area 
(Arctic, North temperate, North tropics, South tropics, South temperate), and Period [historic (1944–1999) versus 
recent (2000–2016)]. Models that include Period (instead of Year) are not supported by the data [less likely than the 
best model by factors of 69 to 320, as indicated by the evidence ratio (model weight of the first-ranked model relative 
to that of the given model, i.e., how many times the first-ranked model is more likely than the given model)]. Models 
including the interaction between time and geographical region/latitude do not improve the model fit or are much less 
supported by the data than are models without the interaction. See (7) for model output and analyses of total 
predation rates. Note that we used quadratic or third-order polynomial terms to mimic the relationships depicted in 
Kubelka et al.’s figures (5). Number of parameters denotes number of model parameters without the random effects. 
∆AIC is the difference in Akaike information criterion between the first-ranked model (AIC = 349.8) and the given 
model. Model probability refers to Akaike weight (wi), the weight of evidence (probability) that a given model is the 
best-approximating model. 
 
 

Model Predictors Number of 
parameters 

∆AIC Model 
probability 

Evidence 
ratio 

  Year + Hemisphere + Latitude (absolute) 5 0.00 0.26 1 
E Year + Latitude (3rd polynomial) 6 0.05 0.25 1.02 
  Year + Geographical Area 7 0.51 0.2 1.29 
B Year (quadratic) + Geographical Area 8 1.43 0.13 2.04 
  Year × Hemisphere × Latitude (absolute) 9 2.74 0.07 3.92 
  Year × Latitude (3rd polynomial) 9 2.78 0.06 4.08 
  Year × Geographical Area 11 6.31 0.01 23.36 
A Year (quadratic) × Geographical Area 16 6.43 0.01 24.89 
D Period × Latitude (3rd polynomial) 9 8.48 0 69.26 
  Period × Hemisphere × Latitude (absolute) 9 9.66 0 124.9 
  Period + Hemisphere + Latitude (absolute) 5 10.30 0 175.3 
  Period + Latitude (3rd polynomial) 6 11.50 0 319.7 
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Fig. 1. Spatiotemporal variation in daily nest predation rates of shorebirds. (A to C) Predation rate in relation to 
year for different geographical regions: with interaction and using all populations (A), without interaction and using 
all populations (B), with interaction and using only the 88 populations with known exposure from the Arctic and 
North temperate region (C). The model behind (A) is less supported by the data than the model behind (B) by a 
factor of ~18 (Table 1). (D to F) Predation rate in relation to latitude for different periods: with interaction (period as 
two-level factor) and using all populations (D), without interaction (year as continuous variable) and using all 
populations (E), with interaction and using only the 98 populations with known exposure (F). The model behind (D) 
is less supported than the model behind (E) by a factor of ~70 (Table 1). In (A) to (F), lines and shaded areas 
represent model predictions with 95% confidence interval (CI) based on posterior distribution of 5000 simulated 
values. Note the weak (P > 0.64) temporal increase in (C) [estimate = 0.08 (95% CI, –0.07 to 0.2) from a linear 
model without interaction] and (F) [estimate = 0.06 (95% CI, –0.09 to 0.17)]. See Table 1 for model description 
and comparison and (7) for details. (G) Temporal change in the percentage of populations in which exposure was 
estimated [following (10)] to calculate predation rate. Note the sharp decline in the Arctic relative to the other 
regions [see (7) for overall and region-specific changes]. Circles represent data for 5-year intervals. (H) Modeled 
changes in predation rate over time assuming different values of B (proportion of nesting period observed; higher 
values indicate nests found sooner after egg laying) for populations with unknown exposure and year <2000 
(leaving the original estimates for all remaining populations). This exercise explores the sensitivity of the results to 
using older studies where the stage at which nests were found is less certain. (I) Relation between true and 
estimated predation rate for different values of B [N = 65 populations, as in (5)]. The dashed line indicates a slope 
of 1 (i.e., estimated values equaling true values). In (G) and (I), lines and shaded areas represent locally estimated 
scatterplot smoothing with 95% CI; in (H), lines and shaded areas represent model predictions with 95% CI based 
on posterior distribution of 5000 simulated values. 
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