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Abstract
1.	 Indirect interactions are widespread among prey species that share a common 

predator, but the underlying mechanisms driving these interactions are often un-
clear, and our ability to predict their outcome is limited.

2.	 Changes in behavioural traits that impact predator space use could be a key proxi-
mal mechanism mediating indirect interactions, but there is little empirical evi-
dence of the causes and consequences of such behavioural-numerical response 
in multispecies systems.

3.	 Here, we investigate the complex ecological relationships between seven prey 
species sharing a common predator. We used a path analysis approach on a com-
prehensive 9-year data set simultaneously tracking predator space use, prey den-
sities and prey mortality rate on key species of a simplified Arctic food web.

4.	 We show that high availability of a clumped and spatially predictable prey (goose 
eggs) leads to a twofold reduction in predator (arctic fox) home range size, which 
increases local predator density and strongly decreases nest survival of an inci-
dental prey (American golden plover). On the contrary, a scattered cyclic prey 
with potentially lower spatial predictability (lemming) had a weaker effect on fox 
space use and an overall positive impact on the survival of incidental prey.

5.	 These contrasting effects underline the importance of studying behavioural re-
sponses of predators in multiprey systems and to explicitly integrate behavioural-
numerical responses in multispecies predator–prey models.

K E Y W O R D S
apparent competition, arctic, home range, indirect effects, numerical response, predation, 
prey, tundra
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1  |  INTRODUC TION

Interspecific interactions are central to the functioning of ecologi-
cal communities and can be a critical driver of species distributions 
(Case et al., 2005; García-Girón et al., 2020). In their simplest form, 
co-occurring species have direct impacts on each other through 
mechanisms such as competition, facilitation and predation, the 
strength and outcome of which shape species ability to coexist. 
However, predicting the effect that a species has on another species 
becomes increasingly complex as the size of the ecological network 
increases (Godsoe et al., 2017), and co-occurrence alone is a poor 
proxy of ecological interactions (Blanchet et al., 2020). This is largely 
due to indirect interactions that connect species together through 
chains of direct interactions with one or multiple mediating species. 
Untangling the mechanisms that link species across systems is key to 
understanding what structures ecological communities.

Indirect interactions are widespread among prey species that 
share a common predator (Holt & Bonsall, 2017). They occur when 
the availability of one prey species increases (apparent competition) 
or reduces (apparent mutualism) predation pressure on an alternate 
prey through the response of the shared predator (Holt, 1977; Holt & 
Bonsall, 2017). The resulting effect on the receiving species depends 
on two main mechanisms: how fluctuating prey availability changes 
predator per capita acquisition rate (the functional response) and 
how it impacts predator number (the numerical response) typically 
through changes in demographic rates (Solomon, 1949). Fluctuations 
in prey density can also modulate predator behaviour, causing swift 
changes in predator local density (behavioural-numerical response or 
aggregative response) with consequential impacts on alternate prey 
species (Holt & Kotler, 1987). For example, in subtidal cobble reefs, 
experimentally increasing bivalve density (a favoured prey) led to the 
local aggregation of predators, in turn reducing the survival of co-
occurring gastropods (an alternate prey) (Schmitt, 1987). In coastal 
ecosystems, the behavioural response of a fearful mesopredator 
(racoon) exposed to playbacks of a large carnivore (dog) reduced its 
local abundance and foraging efforts, thereby strongly benefitting 
its prey (crabs, fish and worms) (Suraci et al., 2016). Such changes 
in predator behavioural traits typically respond faster to fluctuating 
prey density than demographic rates and could be a primary mech-
anism driving indirect interactions (Werner & Peacor, 2003). Recent 
empirical-based models also indicate that numerical response medi-
ated by changes in predator space use, especially home range size, 
can ultimately affect prey species coexistence in the wild (Beardsell 
et al., 2023).

Home range formation is a fundamental behavioural trade-off 
that acts as the primary link between environmental fluctuations 
and local predator density, especially in territorial animals (Grant 
& Kramer, 1990; López-Sepulcre & Kokko, 2005). Home ranges are 
usually smaller as resource quality and abundance increase (Love-
ridge et al.,  2009; Sells et al.,  2022) and are shaped by resource 
characteristics such as their spatial distribution, predictability and 
accessibility (Dickie et al.,  2022; Maher & Lott,  2000). The home 
range size of a predator should reflect a dynamic compromise 

between the benefits of prey acquisition and the combined costs of 
movements and competitive interactions with peers (Hixon, 1980; 
Schradin et al.,  2010). Surprisingly, empirical and theoretical evi-
dence of the ultimate consequences of these variations in home 
range size for prey species are still scarce.

The relationships between the abundance of multiple distinct 
prey species and predator home range size, and the consequences 
of changes in predator home range size on prey demographic pa-
rameters, are rarely quantified in natural communities (Beardsell 
et al.,  2023). This strongly reduces our ability to (i) fully integrate 
behavioural-numerical responses in multispecies predator–prey 
models and (ii) identify the dominant mechanisms driving predator-
mediated interactions in the wild. Here, we use a comprehensive 
9-year data set simultaneously tracking predator space use, prey 
densities and prey mortality rate in a simplified Arctic food web to 
investigate the role of behavioural-numerical response (predator 
space use) in mediating indirect interactions among prey species. 
Specifically, we combine spatial and demographic data from seven 
prey species and their common predator to (1) assess the interacting 
effects of the primary prey species (snow goose Anser caerulescens 
atlanticus, brown lemming Lemmus trimucronatus and collared lem-
ming Dicrostonyx groenlandicus) on the home range size of a shared 
predator (arctic fox Vulpes lagopus), (2) quantify the consequences of 
changes in predator home range size on nest survival of sympatric 
incidental prey species (American golden-plovers Pluvialis dominica, 
Lapland longspurs Calcarius lapponicus, Baird's sandpiper Calidris 
bairdii and White-rumped sandpiper Calidris fuscicollis), and (3) test 
the hypothesis that adjustment in predator home range size can be a 
key proximal mechanism mediating apparent competition in terres-
trial arctic communities.

Our long-term study was conducted in the arctic tundra where 
large numbers of migratory birds, and small rodent species, share a 
common territorial and generalist predator, the arctic fox. The study 
system includes multiple contrasted prey species, with lemmings 
showing strong interannual variations in abundance, and goose eggs 
that are spatially clumped and predictable in both space and time. 
For many birds, fox predation is the primary cause of nest failure 
(Bety et al., 2002; McKinnon & Bêty, 2009; Smith et al., 2007). This 
shared predation generates numerous predator-mediated inter-
actions among the prey (Bety et al., 2002; Mckinnon et al., 2013; 
Nolet et al.,  2013; Summers et al.,  1998), which can impact their 
population dynamics (Beardsell et al., 2023; Nolet et al., 2013) and 
distribution (Duchesne et al.,  2021; Lamarre et al.,  2017; Léandri-
Breton & Bêty,  2020). The proximal mechanisms driving these in-
direct interactions are uncertain. Interestingly, the different prey 
types (cyclic lemmings and goose eggs) induce opposing indirect 
effects (Duchesne et al., 2021), leading to either short-term appar-
ent mutualism (Bêty et al., 2001; McKinnon et al., 2014; Pedersen 
et al., 2018) or apparent competition (Flemming, Nol, et al., 2019; La-
marre et al., 2017; Mckinnon et al., 2013) with other incidental prey. 
Indeed, predation risk for nesting birds is generally released at high 
lemming abundance (Bêty et al., 2001; McKinnon et al., 2014) partly 
due to predators spending less time foraging and travelling smaller 
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    |  3DULUDE-­DE BROIN et al.

distances within their home range (Beardsell et al., 2022), whereas 
high availability of goose eggs increases nest predation risk for prey 
species located in the goose colony (Lamarre et al., 2017; Mckinnon 
et al., 2013), likely through predator numerical response (Beardsell 
et al.,  2023; Giroux et al.,  2012; Lamarre et al.,  2017). Arctic fox 
presents strong territoriality (Grenier-Potvin et al., 2021), and home 
range size is expected to vary according to prey availability (Eide 
et al., 2004; Pletenev et al., 2021). Variations in home range size of 
resident adults can affect fox density and could act as a key mech-
anism mediating indirect interactions among tundra nesting birds.

As a result of the economical trade-off between the benefit of 
prey acquisition and the combined costs of movements and compet-
itive interactions, we expected fox home ranges to be smaller when 
their primary prey, lemmings and goose eggs, are more abundant 
(P1). Second, we expected that nests of incidental prey (shorebirds 
and passerines) located in smaller fox home ranges would have lower 
survival rates (P2) given their exposure to a higher local predator 
density. Finally, we expected that the direct effects linking goose 
egg availability to home range size and home range size to nest sur-
vival of incidental prey would explain the previously reported appar-
ent competition between geese and incidental prey in this system 
(Duchesne et al., 2021; Lamarre et al., 2017; Mckinnon et al., 2013), 
with no remaining relationship between goose nest availability and 
incidental prey nest survival after controlling for fox home range size 
(P3).

2  |  MATERIAL S AND METHODS

2.1  |  Study system

Field work was conducted from 2008 to 2016 in the southwest 
plain of Bylot Island (72°530 N, 79°540 W), in Sirmilik National Park, 
Nunavut, Canada. The landscape is mostly composed of mesic tun-
dra, with complex polygon networks and wet meadows in the val-
ley bottoms. The study area is ~500 km2 and includes a large snow 
goose colony where ~20,000 pairs nest annually over ~70 km2 (Reed 
et al., 2002). Goose nesting density and the extent and location of 
the colony are relatively stable across years (Duchesne et al., 2021; 
Gauthier et al., 2013).

The arctic fox is the main terrestrial predator on Bylot. It primar-
ily preys on brown and collared lemmings and on the eggs of greater 
snow geese. Lemmings are resident, distributed over the entire 
study area and follow marked cycles of abundance with a period of 
3–4 years (Fauteux et al., 2015; Gruyer et al., 2008). They are virtu-
ally absent during years of low density, with a combined wet biomass 
of less than 0.8 kg/km2, and may reach up to 35 kg/km2 during peak 
years (Figure 1). On the contrary, goose eggs are consistently avail-
able during summer, are massively stored by foxes for consumption 
in later seasons when prey are scarce (Careau et al., 2008; Samelius 
et al., 2007) and are clumped in a colony with high spatial predict-
ability. Over the 9 years of the study, goose eggs represented an 
average wet biomass of 74 kg/km2 (range 29–112 kg/km2; Figure 1) 

in the colony. In addition to these primary prey, foxes opportunis-
tically consume the eggs of all other tundra nesting birds, referred 
to as incidental prey. Among these are passerines such as Lapland 
longspur, as well as shorebirds including Baird's sandpiper, White-
rumped sandpiper and American golden plover, which are mainly 
found in mesic habitat and distributed over the entire study area. 
While these incidental prey are consumed by foxes upon encounter, 
they occur at low densities and represent negligible biomass (Beard-
sell et al., 2021; Duchesne et al., 2021). Their own influence on fox 
movement and home range size is thus likely minimal.

2.2  |  Fox capture

Foxes were captured in May–August 2008–2016 using methods de-
scribed in Lai et al.  (2015). They were sexed, marked with ear tags 
and equipped with Argos transmitters mounted on collars (KiwiSat 
202 and 303, Lotek, Newmarket, Ontario, Canada; 95–115 g; <5% 
of body mass). Transmitters provided a location every 1 or 2 days 
depending on settings. Dens were monitored from May to July using 
automated cameras, and the reproductive status of marked individu-
als was determined based on the presence or absence of pups on 
their dens (Chevallier et al., 2020).

2.3  |  Home range estimation

We quantified fox's annual home range (95% isopleth) using autocor-
related kernel density estimation (Fleming et al., 2015) implemented 
in the ctmm R package (Calabrese et al., 2016). This approach ac-
counts for location accuracy and provides a reliable measure of the 
estimation error associated with each home range contour. We esti-
mated fox annual home ranges using locations collected between 01 
May and 30 October, to maximize data between the onset of goose 
laying and the end of the ice-free season (Lai et al., 2017). We used 
filtered Argos locations as available in the Movebank data repository 
(Berteaux, 2020), and only kept the most precise positions with lo-
cation classes LC3 and LC2, which correspond to positioning errors 
having a 68% probability of being <250 and <500 m (CLS,  2016). 
As advised in Fleming et al.  (2015), we then made scatter plots of 
the relocation data and calculated empirical variograms to identify 
and remove obvious extraterritorial trips and to ensure that all foxes 
included in the analyses showed range residency. An appropriate 
home range model was selected for each individual using Akaike 
information criterion (AICc) to compare different movement pro-
cesses (independent identically distributed, Ornstein–Uhlenbeck, 
integrated Ornstein–Uhlenbeck, Ornstein–Uhlenbeck Foraging; see 
Calabrese et al.  (2016) for information on movement processes). 
We estimated the area of the 95% home range contour for each 
individual-year based on the selected models and extracted the vari-
ance of each home range area to account for estimate uncertainty in 
subsequent analyses. All estimated home range contours are shown 
in Appendix S1.
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4  |    DULUDE-­DE BROIN et al.

To investigate and rule out potential biases in home range 
size due to the low accuracy and low frequency of Argos loca-
tions, we simulated Argos location error and frequency on high-
resolution GPS data obtained in the same population in 2018 and 

2019 (Clermont, Grenier-Potvin et al.,  2021). This allowed us to 
compare home range sizes obtained from GPS data degraded to 
reflect the lower quality of Argos data (see Appendix S2), to home 
range sizes obtained from nondegraded GPS data. Home range 

F I G U R E  1  (a) Bylot island study area with the location of lemming trapping grids, the goose colony boundary and a subset of fox home 
ranges. All estimated home ranges and annual colony boundaries are shown in Appendix S1. Incidental prey nest survival was monitored 
within each home range. Panels (b, c) show the biomass of fox main prey, lemmings and greater snow goose eggs, within the study area 
(2008–2016). Lemming biomass was estimated using the combined density of brown and collared lemmings, multiplied by the average mass 
of adults on Bylot Island (respectively 51 and 57 g). Goose egg biomass was estimated annually by multiplying (1) nest density calculated as 
the proportional average nest density in mesic and humid habitats based on systematic surveys, (2) average clutch size and (3) average goose 
egg mass upon laying on Bylot Island. Years of low lemming biomass are annotated with a star. Note that lemmings are available all year, 
while only cached eggs are available outside the 1-month nesting period.

(a)

(b) (c)
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    |  5DULUDE-­DE BROIN et al.

estimates from both data sets were highly correlated (r2 = 0.7; 
Appendix  S2), although home ranges from degraded data were 
consistently 30% larger. To ensure that home range sizes reported 
in our study are comparable to those calculated from GPS data, 
and thus informative of fox true local density, we used the rela-
tionship between home range sizes obtained from degraded and 
nondegraded GPS data to scale all home ranges included in the 
manuscript (See Appendix S2 for details on validation and scaling 
of home ranges). This facilitated biological interpretation with no 
impact on the results as all home ranges were adjusted using the 
same scaling factor.

2.4  |  Primary prey availability

Foxes whose home range overlaps the goose colony have access to 
goose eggs, while others do not. In contrast, all foxes in the study 
area benefit from the additional food generated by years of high 
lemming density. This produces highly contrasted prey availability 
across space and time. We thus classified each annual fox home 
range based on its spatial location relative to the goose colony (to 
reflect goose egg availability) and on the annual density of lemmings 
(to reflect lemming availability).

We traced the contour of the goose colony every year from 2010 
to 2016 during the incubation period using a GPS receiver aboard 
a helicopter. The contour of the colony was not mapped in 2008 
and 2009. The centroid location and spatial extent of the colony are 
stable across years (Duchesne et al., 2021). We therefore used the 
contour of the earliest recorded year, 2010, to classify home ranges 
of foxes tracked in 2008 and 2009. Using the colony contour, we 
classified each fox home range into one of three classes of goose 
availability: (1) centroid of home range inside the goose colony—full 
access, (2) centroid outside of the colony but home range overlaps 
the colony—partial access and (3) centroid outside the goose colony 
and no overlap—no access.

Lemmings were live-trapped in two 11-ha permanent grids, one 
in wet and one in mesic habitat, to obtain mark–recapture estimates 
of density as described in Fauteux et al. (2015). The trapping grids are 
located within the study area about 30 km north of the goose colony 
centroid. Trapping sessions were conducted in June, July and August 
with 144 Longworth traps deployed in each grid and checked twice a 
day during three consecutive days. Captured lemmings were identi-
fied to species, marked with unique ear-tags and a Passive Integrated 
Transponder tag (Avid Identification Systems, Norco, CA, USA), and 
all subsequent recaptures were noted. We used the average density 
for all three sessions and both lemming species to obtain annual lem-
ming density. We then classified each annual fox home range into 
one of two classes of lemming density, that is low (<14.2 lemming/
km2) or high (>235.2 lemmings/km2). No intermediate lemming den-
sity was observed during the study period. Given the work-intensive 
protocol used to estimate lemming densities, we could not survey 
lemmings in each fox home range. However, systematic records of 
incidental field observations suggest that fluctuations in lemming 

density within the goose colony and the lemming trapping grids are 
synchronized (Appendix  S3). Moreover, the two lemming density 
categories we used are closely reflected by fox breeding propensity 
throughout the study area (Giroux et al., 2012; Juhasz et al., 2020), 
which further suggests overall synchrony. The home range of a given 
fox in a given year could thus fit one of six prey availability categories 
(3 goose × 2 lemming availabilities).

2.5  |  Nest predation risk for incidental prey

To assess how changes in fox home range size impact nest survival 
of incidental prey, we monitored shorebird and passerine nests each 
year from mid-June to mid-July (Lamarre et al., 2017). Nests were 
found opportunistically or through line transect surveys conducted 
within fox home ranges across the study area, both inside and out-
side the goose colony. Lay date and expected hatch date were calcu-
lated for nests found during laying, or estimated using the flotation 
method for nests found during incubation (Liebezeit et al.,  2007). 
Nest status was assessed every 2–6 days, increasing monitoring ef-
forts when nearing the expected hatch date. A nest was considered 
successful if at least one egg hatched, or if one of the following cri-
teria was met: (1) small fragments of residual egg shells were found 
in the nest material close to the expected hatch date, (2) the nest 
was hatching (starred or pipped) on the last visit and was empty on 
the following visit and (3) the nest was empty on the last visit and 
the banded adult was resighted with chicks (McKinnon et al., 2014).

2.6  |  Data analyses

To evaluate the relationship between the availability of fox primary 
prey and fox home range size (P1), we used a linear mixed model fit-
ted with log-home range size as the response variable, and goose egg 
availability (three-level factor), lemming density (two-level factor) 
and their interaction as fixed effects. Sex and reproductive status of 
foxes could impact home range size and were thus included as fixed 
covariates. Fox identity and year were included as random intercepts 
to account for repeated measurements. Foxes live in pairs sharing a 
common home range, so pair mates were given the same fox iden-
tity to reflect this strong dependency. We included the variance of 
each home range size as weight in the linear model to reflect the fact 
that our response variable was estimated (see home range estima-
tion above). Home range sizes were log-transformed to respect the 
assumption of normality in model residuals.

2.7  |  Path analysis

To evaluate the hypothesized causal relationships linking primary 
prey availability, fox home range size and nest survival of incidental 
prey (P2, P3), we used a restricted data set of complete cases within 
a path analysis framework (Shipley, 2009). A path analysis evaluates 
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6  |    DULUDE-­DE BROIN et al.

the plausibility of a causal model that links a set of variables together 
through direct and indirect relationships (Shipley, 2009). This is done 
by performing a simultaneous test of all conditional independence 
claims, known as a directional-separation test, implied by the hypoth-
esized causal model (Shipley, 2000). The causal model is considered 
consistent with the data if the sum of all its conditional independ-
ence claims is no different from a chi-squared distribution (that is, 
if the test statistic, Fisher's C, is above the significance threshold, 
set here at 0.05). The path analysis routine was fitted separately for 
American golden plovers, Sandpipers (including nests of Baird's and 
White-rumped sandpipers), and Lapland longspurs. We thus kept for 
each path analysis only those home ranges in which nest survival 
was monitored for a given incidental prey species.

The models linking prey availability to home range size were the 
same as those used to test P1, with log-home range size as the re-
sponse variable, lemming and goose egg availability as fixed effect, 
as well as fox identity and year as random intercepts. Given the small 
sample size and the weak and nonsignificant effects of reproduc-
tive status and sex on home range size in the previous analysis (see 
results), we did not include these variables in the path analysis. In 
addition, goose egg availability was fitted as a two-level categorical 
variable (full access and no access) instead of a three-level variable 
because the restricted data sets contained ≤5 partial access home 
ranges, causing convergence issues when included. Home ranges 
with partial access were therefore excluded from this analysis.

The paths linking home range size to nest survival were fit-
ted using a generalized linear mixed model based on the logistic-
exposure method (Shaffer, 2004). The method estimates daily nest 
survival and explicitly accounts for variations in the length of nest 
monitoring period. The model was fitted with survival as a binary re-
sponse variable (1: success, 0: failed), log-home range size as a fixed 
effect and fox identity nested within year as random variables to 
control for variation in the number of nests monitored within each 
annual home range. Exposure time was calculated as the number of 
days elapsed between the date a nest was found and one of the fol-
lowing dates: (1) for successful nests, observed or estimated hatch 
date, (2) for failed nests, observed predation date or mid-point be-
tween the date when fate was determined and the last date when 
the nest contained eggs and (3) for nests with undetermined fate, 
date of the last visit for which a status was recorded. For all models 
described above, there was no multicollinearity (all VIF <2) among 
variables included in the same model. Statistical analyses were done 
in R version 4.2.3 (R Core Team, 2021).

3  |  RESULTS

3.1  |  Effects of main prey on fox home range size

We estimated 170 annual home ranges from 109 foxes over 9 years 
and belonging to 91 pairs of known reproductive status. Home range 
size varied from 4.7 to 65.3 km2 with a median of 14.9 km2. Lem-
ming densities varied from 1.6 to 647.9 lemmings/km2 with 3 years 

(2009, 2012, 2013) classified as low lemming density and 6 years as 
high lemming density (Figure 1a shows annual biomass). Goose nest 
density was generally stable across years, averaging 178 nests/km2 
(SD = 62, range = 66–257) (Figure 1b shows annual biomass).

The availability of goose eggs had a strong effect on fox home 
range size (Figure 2; Table 1). In years of low lemming abundance, 
foxes with full access to the goose colony had home ranges on av-
erage 2 and 2.5 times smaller, respectively (estimate [95% CI] = 11.3 
[8.24, 15.4] km2) than those with partial (22.1 [16, 30.5] km2) or 
no access (28.1 [19.6, 40.2] km2) to goose eggs. The same pattern 
was observed when lemmings were abundant (Figure 2), with home 
range size being 1.4 times smaller for foxes that had full access to 
the colony (12.9 [10.4, 16.1] km2) compared to those with partial 
(17.2 [13.5, 22.0] km2) or no access (18.3 [14.7, 22.8] km2). Similarly, 
increasing lemming density reduced fox home range size, but the ef-
fect was weaker and only present for foxes with limited or no access 
to goose eggs (Table 1). Indeed, home range size was 1.2 and 1.3 
times smaller at high compared with low lemming densities for foxes 
with partial or no access to goose eggs, respectively, while home 
range size did not vary with lemming density for foxes with full ac-
cess to the colony (Figure 2). Reproductive foxes had slightly larger 
home ranges than nonreproductive ones, but this effect was not 
conclusive, with confidence interval marginally overlapping 0. Fox 
sex had no detectable effect on home range size. Among foxes with 
partial and no access to the goose colony during years of high lem-
ming density, three individuals had particularly large home ranges 
(Figure  2). When these three individuals were excluded, all effect 
sizes and confidence intervals remained virtually unchanged (Ap-
pendix S4); therefore, results are presented with these individuals 
included.

F I G U R E  2  Influence of prey availability on home range size 
of foxes on Bylot Island, Nunavut (2008–2016). Dots and error 
bars represent the mean and 95% confidence intervals of home 
range size predicted after accounting for sex, reproductive status, 
year and individual pair identity. The jittered dots show raw home 
range estimates, and dot sizes reflect precision of the estimate (1/
variance), with smaller dots indicating less precise estimates.
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3.2  |  Indirect effect of primary prey on incidental 
prey through fox home range size

To test the effect of home range size on nest survival of incidental 
prey and perform the path analyses, each incidental prey species was 
analysed separately. Our data sets contained 116 nests monitored in 
37 fox home ranges over 9 years (American golden plover), 110 nests 
monitored in 17 fox home ranges over 9 years (sandpipers) and 200 
nests monitored in 16 fox home ranges over 7 years (Lapland long-
spur). We verified that the relationships linking prey availability to 

fox home range size were still present with these reduced data sets. 
We confirmed a strong negative effect of goose egg availability on 
fox home range size for the American golden plover (Table S3; Ap-
pendix S5) and Lapland longspur (Table S4; Appendix S5) data sets. 
Coefficient estimates were also consistent with a weak negative 
effect of lemming density dampened inside the goose colony, but 
the effect was no longer significant in these two data sets. There 
were no significant relationships in the sandpiper data set (Table S5; 
Appendix S5).

For American golden plover, the path analysis confirmed that the 
structure of the data was consistent with the hypothesis (P3) that fox 
home range size is the proximal mechanism mediating apparent com-
petition between geese and plover nest survival (Fisher's C2 = 0.03, 
p-value = 0.98). Nest survival of American golden plovers increased 
steeply with fox home range size, with most variation occurring in 
the lower end of the home range distribution and an inflection point 
at 11.5 km2 (Figure  3a). As fox home range size ranged from 5 to 
12 km2, nest survival over the average 10-day monitoring period 
went from 0 [0, 23]% to 55 [11, 86]%. It then reached 80 [49, 95]% 
at 15 km2 and plateaued afterward. Thus, the availability of goose 
eggs directly reduced fox home range size, which in turn reduced 
plover nest survival (Figure 4). After accounting for fox home range 
size, there was no remaining effect of the goose colony on plover 
nest survival. On the contrary, despite the weak negative effect of 
lemming availability on fox home range size detected when testing 
our first prediction, lemmings had a positive overall effect on plover 
nest survival (Figure 4; Appendix S6).

For sandpipers (Figure  3b) and Lapland longspurs (Figure  3c), 
there was no detectable relationship between fox home range size 
and nest survival. In both groups, only lemming availability had a 

TA B L E  1  Generalized linear mixed model testing the effect 
of prey availability on arctic fox home range size at Bylot Island, 
Canada (2008–2016). Conclusive fixed effects are in bold.

Fox home range size

Predictors Estimates [95% CI]

(Intercept) 3.23 [2.91, 3.55]

Partial access to colony −0.24 [−0.52, 0.03]

Full access to colony −0.91 [−1.19, −0.64]

High lemming −0.43 [−0.84, −0.02]

Sex [M] −0.01 [−0.11, 0.08]

Breeder 0.11 [−0.07, 0.28]

Partial access × High lemming 0.18 [−0.14, 0.5]

Full access × High lemming 0.57 [0.27, 0.87]

Random effects

τ00 fox pair 0.08

τ00 year 0.04

Note: ntotal = 170/nyear = 9/nfox pair = 91.

F I G U R E  3  Influence of fox home range size on 10-day nest survival rates of (a) American golden plovers, (b) sandpipers, and (c) Lapland 
longspur on Bylot Island, Nunavut (2008–2016). The full line is the mean model prediction over the average nest monitoring period (10-
days) and is presented with its 95% CI. The dots are raw nesting success averaged over equally sized intervals. Shaded areas represent the 
distribution of home ranges that include 90% of monitored nests for each species.
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conclusive and positive effect on nest survival (Appendix S6). The 
distribution of home range sizes in the sandpipers and Lapland long-
spurs analyses was narrower and included fewer small home ranges 
than for American golden plovers (Figure 3), with 22 individual home 
ranges under 12 km2 for plovers compared to only five for sandpip-
ers and nine for Lapland longspurs. To assess the impact of this dis-
crepancy in the distribution of home range sizes, we again ran the 
analysis on plover keeping only home ranges over 12 km2 and found 
no conclusive relationship. This indicates that apparent differences 
observed between prey species could be due to sample sizes.

4  |  DISCUSSION

Our study provides empirical evidence of the role of behavioural-
numerical responses, through changes in predator space use, as a 
driver of indirect interactions in an arctic vertebrate community. Ben-
efitting from a 9-year data set based on the simultaneous monitoring 
of multiple prey species and their common predator, we show that 
high availability of primary prey (lemmings and geese) contracts pred-
ator (arctic fox) home range, which increases effective predator den-
sity and reduces nest survival of an incidental prey (American golden 
plover). This behavioural-numerical response was strongest in the 
dense and spatially predictable goose colony, and fully accounted for 
the apparent competition associated with this prey species. Lemming 
abundance had a weaker effect on fox home range size and an overall 
positive impact on incidental prey. These contrasting effects under-
line the importance of studying behavioural changes of predators in 
multiprey systems and to explicitly integrate behavioural-numerical 
responses in multispecies predator–prey models.

As expected, high availability of goose eggs and lemmings both 
reduced the size of fox home ranges. This is consistent with previous 
studies (Loveridge et al., 2009; Sells et al., 2022), including in arctic 
fox (Angerbjörn et al., 1997; Eide et al., 2004; Pletenev et al., 2021), 

suggesting that high resource availability should tip the economical 
trade-offs of home range formation towards smaller home ranges. 
However, the effect of the goose colony was stronger than that of 
lemming, and variations in lemming density had no detectable effect 
on home range size when foxes were inside the goose colony. Having 
access to an abundant alternative prey, here goose eggs, might have 
allowed foxes to maintain small home ranges in years of low lem-
ming density. Nonetheless, home ranges in the colony were not fur-
ther reduced in years of high lemming density, when the combined 
abundance of both prey type was likely higher than when only goose 
eggs were available. There are multiple differences between these 
two prey types that can help understand their respective effects on 
fox home range size. Goose nests are highly concentrated within the 
colony, offering higher food density compared with lemmings even 
during years of high lemming abundance. Spatial clumping of food 
resources can facilitate the formation of small home ranges (Maher 
& Lott, 2000; Pletenev et al., 2021) as individuals may reduce the 
costs of movements and competitive interactions, while still fulfill-
ing their energetic needs. In addition, the goose colony provides a 
consistent and spatially predictable food resource, whereas there 
are marked annual variations in lemming abundance and their spatial 
distribution is potentially more heterogenous (Gruyer et al., 2008). 
In high lemming years, foxes throughout the study area benefit from 
abundant lemming prey, which consistently translates into higher 
proportion of breeding dens (Giroux et al., 2012; Juhasz et al., 2020). 
Nonetheless, small-scale spatial variations in lemming density within 
each home range could have been missed by our annual estimates. 
Such spatial heterogeneity could have reduced our ability to detect 
stronger effects for this prey as well as decrease its overall predict-
ability for foxes. On the contrary, given the high spatiotemporal pre-
dictability of the goose colony, the benefits of adjusting their home 
range to prey abundance might be higher for foxes established in 
the colony compared to those relying on the less predictable prey. 
In addition, goose eggs are heavily cached by foxes for future 

F I G U R E  4  Direct and indirect relationships between primary prey availability, fox home range size and American golden plover nest 
survival at Bylot Island, Nunavut (2008–2016). Standardized path coefficients (95% CI) are presented above each path. Solid and dashed 
lines, respectively, represent conclusive and inconclusive relationships. The model was consistent with the structure of the data (Fisher's 
C2 = 0.03, p = 0.98).
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consumption (Careau et al., 2008; Samelius et al., 2007). Stored eggs 
increase the long-term value of home ranges located in the colony, 
benefiting foxes who maintain small stable home ranges and poten-
tially providing information on habitat quality to newcomers. Lastly, 
although we could not delineate the defended part of the home 
range, previous studies have shown strong territoriality among foxes 
in the colony (Clermont, Grenier-Potvin et al., 2021; Grenier-Potvin 
et al., 2021). The higher abundance, spatial clumping, predictability 
and storage potential of goose eggs could attract a higher number 
of foxes towards the colony and increase competition compared to 
elsewhere on the island, thus promoting smaller home ranges.

Nest survival of plovers declined drastically as fox home ranges 
became smaller. This behavioural change in predator space use 
largely explained the known negative predator-mediated interac-
tion between geese and plovers (Duchesne et al.,  2021; Lamarre 
et al., 2017; Mckinnon et al., 2013) as there was no remaining ef-
fect of the goose colony on plover nest survival after accounting for 
fox home range size. The absence of remaining effect also suggests 
that other mechanisms, such as prey switch (Murdoch,  1969), are 
not primary mediators of the variations in predation rates associ-
ated with the goose colony. The small reduction in home range size 
associated with high lemming abundance outside the goose colony 
might also have reduced plover nest survival, but this effect seemed 
completely buffered by the previously reported positive indirect 
interaction between lemmings and fox incidental prey (Duchesne 
et al.,  2021; McKinnon et al.,  2014). This suggests that other be-
havioural changes associated with fox response to lemming density 
released predation pressure on incidental prey when lemmings were 
abundant. For instance, foxes reproduce massively when lemmings 
are abundant (Juhasz et al., 2020) and time-consuming behaviours 
associated with parental care (e.g. cub thermoregulation, lactation, 
grooming) might reduce fox distance travelled and activity time, 
thereby lowering encounter rate with incidental prey (Beardsell 
et al.,  2022). Decreasing foraging efforts when food is abundant 
(Harding et al., 2007) or adjusting prey preference as a function of 
prey density (i.e. prey switch; Murdoch, 1969) could also release pre-
dation on incidental prey. While these mechanisms have yet to be 
fully explored in our system (Beardsell et al., 2022), the contrasted 
effects of the two primary prey highlight the importance of study-
ing the behavioural responses of predators, and integrating these 
responses in predator–prey models.

There was no detectable effect of fox home range size on nest 
survival of sandpipers and Lapland longspurs. We had expected 
these species to be impacted by fox behavioural-numerical response, 
as observed for the American golden plover. Indeed, all three species 
nest in similar habitats and cannot actively defend their nest against 
foxes, which should make them equally vulnerable to an increase in 
encounter rate caused by fox behavioural-numerical response. Po-
tential interpretations of such lack of effect could involve species 
traits impacting nest detectability or attack probability, such as re-
leased odours (Grieves et al., 2022), visual camouflage (Kilner, 2006) 
and behaviour (Meyer et al., 2020; Smith et al., 2012). However, dif-
ferences between species need to be interpreted with caution due 

to limitations in the available data for these analyses. In particular, 
the range of home range size available was narrower for sandpipers 
and Lapland longspurs than for American golden plovers. When sub-
sampling the plover data set to keep only home ranges larger than 
12 km2, the relationship for this species also became inconclusive. 
This suggests that when home ranges are large, variations in size 
have little impact on nest survival of incidental prey, potentially be-
cause encounter rates remain generally low. On the contrary, the 
strong effect observed in plovers indicates that further contracting 
small home ranges quickly increases encounter rate, causing a sharp 
decline in nest survival. This aligns with the predictions of a recent 
mechanistic model calibrated for sandpipers in the same system 
(Beardsell et al., 2023). Based on the full distribution of home ranges 
observed here, the model shows steep variation in sandpipers' nest 
survival when home ranges are small, and a fading effect in the 
upper end of the distribution. Thus, although we only had clear and 
conclusive results for American golden plover, it seems premature to 
rule out that with more amenable data sets, a similar effect could be 
found in the other incidental prey.

Behavioural-numerical responses have been documented in other 
systems (Anderson, 2001; Castorani & Hovel, 2015; Chaneton & Bon-
sall,  2000), but rarely in a multispecies context (see Abrams  (2022) 
for a discussion on this topic). Here, we show that the behavioural-
numerical response of foxes, through changes in home range size, is 
the proximal mechanism driving apparent competition between geese 
and shorebirds in an arctic vertebrate community. Using these results, 
it becomes possible to calibrate mechanistic models of predation and 
predict how changes in geese distribution and abundance propagate 
through the food web to impact other co-existing prey (Beardsell 
et al., 2023). It could also help explain why multiple ground-nesting 
bird species, including shorebirds and passerines, are often found in 
lower abundance within goose colonies (Duchesne et al., 2021; Flem-
ming, Smith, et al., 2019). Such behavioural changes in predators are 
likely common and could be a major driver structuring ecological com-
munities (Schmitz et al., 2000; Werner & Peacor, 2003).

Monitoring fox home ranges allowed us to identify the mech-
anism driving apparent competition in our system, yet it did not 
explain apparent mutualism between lemmings and shorebirds. Ac-
counting for changes in predator home range size is a good first step 
in building accurate behavioural-numerical response as information 
is readily available for a wide array of species (Broekman et al., 2023) 
and provides direct insights into local predator densities. However, 
home range formation is only one behavioural trait that may respond 
to variations in prey availability and subsequently impact other co-
existing prey. There is a need for multispecies studies focussing on 
other predator behavioural traits such as activity budget, habitat 
selection, home range overlap and prey preferences to assess how 
they may change in relation to prey density, and most importantly 
what are the resulting consequences of these changes for other co-
existing prey. The recent developments in biologging technologies 
based on high-throughput GPS tracking (Nathan et al.,  2022), be-
havioural classification using accelerometers (Clermont, Woodward-
Gagné, et al., 2021) and animal-borne sensors such as video cameras 
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(Brockman et al., 2017) and audio recorders (Studd et al., 2021) open 
up promising opportunities to study behavioural changes that shape 
predators' response in the wild. Ecologists and mathematical mod-
ellers should establish productive collaborations and take advantage 
of abundant data arising from these new technologies to fully inte-
grate behavioural changes in predator–prey models (e.g. Beardsell 
et al., 2023; Northfield et al., 2017).
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Appendix S4. Similar results after removing three individuals with 
large home ranges.
Appendix S5. Result tables for the effect of lemming and goose eggs 
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sets used for the path analyses.
Appendix S6. Result tables for the effect of fox home range size on 
incidental prey survival.
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