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Abstract 

 

Ecological forecasts under climate change are essential to inform biodiversity conservation plans 

but their non-falsifiable nature requires a thorough evaluation of their framework. Most 

ecological forecasts under climate change use ecological niche models that correlate 

environmental variables with the presence or regional density of a species, assuming that the 

current environmental niche occupied by a species can be used to anticipate its response to 

environmental change. Despite the large number of ecological forecasts under climate change 

that have been recently published, most of them are limited to predicting presence using climate 

variables as predictors. Here I evaluate the importance of incorporating non-climate predictors of 

regional density in ecological niche models. Given the greater spatial heterogeneity in regional 

density data compared to presence data, I used geographically weighted regression (GWR), an 

ecological niche model providing a spatially-explicit description of the influence of ecological 

predictors. I focused on North American beaver (Castor canadensis) regional density in Québec, 

Canada, and on human (Homo sapiens) populations in the United States and across the world 

because of the availability of accurate data on regional density patterns as well as potential non-

climatic correlates of regional density. The influence of non-climate predictors of beaver 

regional density was very important in six commonly used ecological niche models. GWR 

models of beaver regional density performed as well as the other six ecological models used and 

the spatial representations of the influence of ecological predictors obtained with GWR models 

were broadly congruent with current ecological knowledge of beavers. Approximately half the 

variation in human regional density across the world was explained by GWR models based on 

climate conditions. Combining these GWR models with forecasted climate change models and 

forecasted demographic change models led to the first spatially-explicit, global human 

vulnerability index to climate change. There was a significant negative correlation between the 

predicted vulnerability to climate change and the per-capita CO2 emissions, suggesting a moral 

hazard in international climate change policies. The demographic trends in the United States 

during the 20
th
 century were more strongly correlated with climate variables than socio-

economical variables. Additionally, the regional demographic trends were such that the average 

climate conditions experienced by American citizen became hotter and drier throughout the 

century. The demographically driven temperature change was six times greater than the natural 
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temperature change. Non-stationary ecological niche models of regional density represent a 

useful tool in the development of climate change forecasts and adaptation policy for biodiversity 

in general and human societies in particular.  
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Résumé 

 

Les prédictions écologiques dans un contexte de changements climatiques sont essentielles pour 

l‘élaboration de plans de gestion de la biodiversité. Par contre, il est important de s‘assurer 

qu‘elles sont conçues de manière appropriée puisqu‘elles sont scientifiquement infalsifiables. La 

majorité de ces prédictions utilise des modèles de niche écologique basés sur des corrélations 

entre la présence ou la densité régionale d‘une espèce et des variables environnementales,  en 

supposant que la niche écologique actuelle d‘une espèce peut nous permettre d‘anticiper sa 

réaction face à des conditions environnementales différentes. Malgré le nombre important 

d‘études sur le sujet, la plupart d‘entre elles se limite à prédire la distribution d‘une espèce en 

fonction de variables climatiques. J‘évalue dans cette thèse l‘importance de variables non-

climatiques dans les modèles de niche écologique de densité régionale. Compte tenu que la 

densité régionale d‘une espèce a une plus grande hétérogénéité spatiale que sa simple présence, 

j‘ai utilisé des régressions pondérées géographiquement (RPG). Ces RPGs sont des modèles de 

niche écologique qui permettent de visualiser spatialement l‘influence des variables utilisées 

pour modéliser la niche écologique d‘une espèce. Mes analyses sont basées sur le castor (Castor 

canadensis) au Québec et sur les populations humaines (Homo sapiens) aux États-Unis et sur la 

planète parce que nous avons des données précises tant sur leur densité régionale que sur les 

facteurs environnementaux qui peuvent influencer leur densité régionale. Les densités régionales 

du castor étaient fortement influencées par des facteurs non-climatiques selon six modèles de 

niche écologique fréquemment utilisés. Les RPGs ont été aussi performant que ces six modèles 

de niche écologique et la représentation spatiale de l‘influence des variables utilisées pour 

décrire la niche écologique du castor est en accord avec nos connaissances écologiques actuelles. 

Des RPGs basées sur quelques variables climatiques m‘ont permis d‘expliquer environ la moitié 

de la variation des densités régionales humaines sur la planète. J‘ai créé le premier indice global 

et quantitatif des vulnérabilités humaines aux changements climatiques en combinant ces RPGs 

avec des prévisions démographiques des Nations-Unies. Les vulnérabilités prédites par mes 

modèles sont significativement négativement corrélées avec les émissions de CO2 per-capita; ce 

qui suggère un risque subjectif inhérent dans les négations internationales sur les changements 

climatiques. Les tendances démographiques aux États-Unis durant le 20
ième

 siècle étaient plus 

fortement corrélées avec des variables climatiques qu‘avec des variables socio-économiques. De 
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plus, les tendances démographiques régionales ont fait que la température ressentie par les 

américains a augmenter au cours du dernier siècle. Ces changements de températures ressentie 

causés par les tendances démographiques régionales sont six fois plus important que les 

changements de températures d‘origine naturelle. Les modèles de niche écologique spatialement 

non-stationnaire de densité régionale représente un outil important dans le développement de 

prédictions écologiques dans un contexte de changements climatiques et peuvent contribuer à 

l‘amélioration des politiques d‘adaptations aux changements climatiques tant pour la biodiversité 

que pour les sociétés humaines.  
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« Mais notre vue s‘est aiguisée, et nous avons fait un progrès cruel. Avec l‘avion, nous avons 

appris la ligne droite. A peine avons-nous décollé nous lâchons ces chemins qui s‘inclinent vers 

les abreuvoirs et les étables, ou serpentent de ville en ville. Affranchis désormais des servitudes 

bien-aimées, délivrées du besoin des fontaines, nous mettons le cap sur not buts lointains. Alors 

seulement, du haut de nos trajectoires rectilignes, nous découvrons le soubassement essentiel, 

l‘assise de rocs, de sable, et de sel, où la vie, quelquefois, comme un peu de mousse au creux des 

ruines, ici et là se hasarde à fleurir. 

 

Nous voilà donc changés en physiciens, en biologistes, examinant ces civilisations qui ornent des 

fonds de vallées, et, parfois, par miracle, s‘épanouissent comme des parcs là où le climat les 

favorise. Nous voilà donc jugeant l‘homme à l‘échelle cosmique, l‘observant à travers nos 

hublots, comme à travers des instruments d‘étude. Nous voilà relisant notre histoire. » 

 

Saint-Exupéry 

Terre des hommes 
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Chapter 5: United States climate change driven by persistent climate-

correlated demographics 

 

One of the main criticisms of ecological niche models in climate change research is that current 

species-climate relationships may not reflect future species-climate relationships. The 

availability of historical climate and human data permits evaluation of this criticism by assessing 

the temporal stability of climate-human relationships. It is therefore possible to evaluate the 

relevance of forecasted ecological models of human populations by comparing their results with 

hindcasted ecological models, which are ecological models of human populations based on 

historical data. This chapter demonstrates that climate conditions were major correlates of 

demographic trends in the United States throughout the 20
th

 century.  Moreover, the regional 

demographic trends were such that the average climate conditions experienced by American 

citizen became hotter throughout the century. The demographically driven temperature change 

was six times greater than the natural temperature change. This stresses the importance of 

climate conditions not only in influencing the fate of prehistoric human dynamics but in 

influencing one of the most currently technologically advanced and wealthy nations of the worl
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Chapter 1 : Introduction 

 

1.1 General introduction 

1.1.1 Ecological importance of species regional density 

 

―Climate plays an important part in determining the average numbers of a 

species, and periodical seasons of extreme cold or drought seem to be the 

most effective of all checks.(…) but in so far as climate chiefly acts in 

reducing food, it brings on the most severe struggle between the individuals, 

whether of the same or of distinct species, which subsist on the same kind of 

food‖. (Darwin 1859 p.51) 

 

Even though the central determinants of the distribution and regional density of species were 

identified in Darwin‘s seminal work, our capacity to explain the abundance and distribution of 

the millions of species on earth remains limited. The complexities in predicting the presence and 

the abundance of a given species in a given area has lead to the development of the field of 

ecology, most notably with Elton‘s famous book ―Animal Ecology‖ (1927). Classical and more 

recent studies have insisted on the prevalence of mechanisms of biotic (Davis et al., 1998b; 

Davis et al., 1998a) or abiotic nature (Pearson & Dawson, 2003). The concept of abiotic 

mechanisms via biotic mechanisms, as suggested by Darwin, has been much debated (MacArthur 

1972, Hodkinson 1999) but has rarely been tested for multiple reasons (Gaston 2003). While 

much progress has been made during the 20
th
 century, the importance of ecological research 

aimed at understanding the factors limiting species abundance both in space and time is more 

critical than ever given the profound changes in the biosphere caused by human activities. 

 

1.1.2 Ecological niche concepts 

 

The ecological niche is one of the most fundamental concepts in ecology and yet it remains very 

difficult to define, let alone measure (Colwell and Futuyma 1971, Whittaker et al. 1973, Hurlbert 
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1984, Peters 1991). The definition of a niche based on Hutchinson (1957) ‗‗a set of points in an 

abstract n-dimensional N space‘‘ is arguably the most rigorous (Godsoe, 2010), albeit not the 

easiest to understand or implement. According to Hutchinson, the niche of a species is multi-

dimensional in the sense that it represents the conditions (i.e. the points) of many environmental 

variables (i.e. the n-dimensions) essential for the persistence of a species in various environments 

(i.e. the N spaces). For example, in a given environment, the dimensions of the ecological niche 

of a given tree species can refer to, with great simplification, the minimal and maximal amount 

of light, CO2, nutrients, and soil structure, as well as the local density of species that are related 

to this species in terms of competition, commensalism, predation, and parasitism. Hutchison 

(1957) however distinguished the fundamental niche of a species as the abiotic dimensions of a 

species‘ niche, in contrast with the realized niche that represents a subset of the fundamental 

niche where a species can persist when biotic interactions are explicitly taken into consideration 

(Guisan & Zimmermann, 2000). 

 

1.1.3 Ecological niche models 

 

The earliest models to correlate species distributions and climate seem to be those of Johnston 

(1924), predicting the invasive spread of a cactus species in Australia, and Hittinka (1963), 

assessing the climatic determinants of the distribution of several European species (Pearson & 

Dawson, 2003). The importance of modelling the ecological niche of a species is not only 

fundamental in the advancement of the field of ecology, but it is also critical for biodiversity 

management plans. Recently, the importance of ecological niche models has been most 

recognized in conservation and protected area planning under a changing climate (Burns et al., 

2003; Lovejoy & Hannah, 2005; Klausmeyer & Shaw, 2009; Rose & Burton, 2009; Seo et al., 

2009; Butchart et al., 2010). The use of ecological niche modelling for predicting species 

responses to climate change is based on the assumption that the current environmental niche 

occupied by a species can be used to anticipate its response to environmental change (Peterson, 

2003; Thuiller et al., 2005; Austin, 2007; Thuiller, 2007). 

 

Despite the recent advances in statistical models describing the current ecological niche of a 

species (Elith et al., 2006; Haegeman & Etienne, 2010), these models have been criticized for 
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their overly simplistic framework that ignore, amongst other things, dispersal limitation, biotic 

interactions, and regional adaptations (Pearson & Dawson, 2003). Furthermore, the vast majority 

of ecological niche models are based on presence data rather than regional density data. Most 

monitoring of species responses to recent climate change has indeed primarily focused on 

species range expansions and contractions (i.e. change in a species‘ geographical presence), with 

little attention paid to changes in abundance between range boundaries (Parmesan & Yohe, 2003; 

Root et al., 2003; Araujo et al., 2005; Martinez-Meyer et al., 2006). The heterogeneity in the 

structure of regional density across species distributions (McGill & Collins, 2003) suggests 

however that the greatest ecological changes caused by climate change may not be at the 

distribution limits of species but rather in core areas of the range corresponding with major 

regional density gradients (Jarema et al., 2009). 

 

1.1.4 Species regional density 

The determinants of a species regional density is scale-dependent (McGill, 2010), which is to say 

that we first need to define the spatial extent of the region of interest. For example, the factors 

responsible for human densities being higher on the island of Montreal than the surrounding 

regions are likely to be different than the factors responsible for higher human densities in Africa 

than Antarctica. At a large spatial scale, climate conditions are often the main determinants of a 

species regional density (Whittaker, 1975), although recent studies suggested that small scale 

intraspecific interactions can also explain ecological patterns at much larger spatial scales (Clark, 

2010; Gotelli et al., 2010). While these two recent examples of small scale biotic interactions 

driving large scale ecological patterns are insightful, the absence of terrestrial vertebrate 

ectotherms in the arctic and the absence of polar bears in the Mediterranean Sea strongly suggest 

that climate is the main driver of regional density at large spatial scale. The historical 

contingencies related to long distance dispersal of species in isolated areas can also explain the 

regional density of species at large spatial scale. At a small spatial scale, biotic interactions 

(competition, predation, and parasitism) and the availability of suitable habitat are often the main 

determinants of the regional density of a species. Such broad patterns where climate is driving 

large scale ecological patterns and biotic interactions are driving small scale ecological patterns 

are well established in the ecological literature, although research on unusual regional density 

patterns has demonstrated that there are exceptions to the rule. For example, variability in 
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regional density at small spatial scale can be caused by temporal variations in abiotic (Chavez et 

al., 2003; Fisher & Wilkinson, 2005) and biotic (Boutin et al., 2006) factors. Moreover, the 

temporal changes in biotic factors can also be triggered by seemingly unrelated abiotic factors 

(Klvana et al., 2004). 

 

1.1.5 Spatial non-stationarity in the determinants of species regional density 

For a given species, the determinants of regional densities may vary across its distribution. For 

example, variation in regional density can be caused by different mechanisms acting in different 

portions of the range (e.g. competition in the south and temperature in the north; (Barnes, 1958; 

Gross & Price, 2000) as well as local adaptations (Elmes et al., 1999). Such spatial variability in 

the importance of ecological determinants of a species regional density can be referred to as 

spatial non-stationarity. For example, if a species‘ regional density is correlated to the amount of 

food available throughout its distribution in the same way, then we can say that its relationship to 

food availability is spatially stationary. On the other hand, if a species‘ regional density is 

correlated to the amount of food available in the southern portion of its distribution but not in the 

northern portion of its distribution, for example because low winter temperatures cause mortality 

in the northern portion of its distribution, then we can describe its relationship to food 

availability and winter temperature as spatially non-stationary. 

 

Spatial non-stationarities in the determinants of species regional density are likely responsible for 

the great variation in regional density across a species distribution. The structure of regional 

density across a species distribution can thus be seen as the end result of all the mechanisms 

regulating regional density (McGill & Collins, 2003). Such structure has been shown to be 

rightly skewed (Gregory et al. 1998), meaning that species are mostly rare over their range with 

a few dense areas but further characteristics have been contentious (Sagarin et al., 2006).  

 

1.1.6 Availability of regional density datasets 

There is a paucity of spatially extensive and accurate resolution datasets describing species 

regional density, which is understandable given the logistical difficulties and financial 

requirements of estimating relative abundance throughout the range, particularly because most 

animal species are cryptic. Notable exceptions include the North American Breeding Bird 
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Survey which provides datasets for all North American bird species based on more than 4000 

―routes‖, or survey transects performed on a yearly basis (Patuxent Wildlife Research Center 

2001). Similarly, regional density of many tree species can be obtained from various 

governmental organisations given the economical importance of forestry activities (Iverson & 

Prasad, 1998). However, despite the quality of the regional density datasets for these species, the 

availability of accurate and high resolution datasets describing the ecological determinants of 

their regional densities is generally limited. In this thesis, I focus on two additional species for 

which we have accurate regional density data and the natural history knowledge and data 

required to model major potential determinants of their density.   

 

1.1.7 Thesis structure 

This thesis explores the importance of species regional density and spatial non-stationarity in 

ecological models aimed at informing climate change ecological policies. Given the paucity of 

broad and accurate datasets of species regional density, I focus on North American beaver 

(Castor canadensis) regional density in Québec, Canada, and on human (Homo sapiens) 

populations in the United States and across the world. More specifically, I use the beaver dataset 

to assess the importance of spatial non-stationarity for improving the ecological realism of 

ecological niche models used in climate change research. I use human population data across the 

world to assess correlations between climate conditions and human regional density and to 

provide a spatially-explicit null model of the potential impacts of climate change on human 

populations. I also use historical and contemporary human-climate relationships in the United 

States to test the implicit assumption in forecasted models of vulnerability to climate change that 

the relationship between regional density and regional climate conditions remains the same over 

time. This thesis thus contains two chapters on beaver climate ecology and two chapters on 

human climate ecology. 
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1.2 Ecological models of beaver regional density in Québec, Canada 

 

1.2.1 Rationale 

The broad geographical coverage and reliability of beaver regional densities in the province of 

Québec, Canada (Jarema et al., 2009), combined with the exhaustive knowledge of beaver 

natural history (Müller-Schwarze & Sun, 2003) and the availability of reliable datasets with high 

spatial resolution for a wide range of potential ecological determinants of beaver regional 

densities (Jarema, 2006) provide an ideal system to explore niche models and the importance of 

spatial non-stationarity in climate change ecological research. The study area covers nearly half 

the latitudinal range of the distribution of beavers in North America and regional beaver densities 

were estimated in 161 sampling units representing approximately 75% of the 1.1 million km
2
 of 

our study area. The regional densities are based on aerial surveys of beaver colonies, which are 

highly accurate because active colonies must build autumn food caches to survive the winter and 

these floating food caches are easily visible given their large size (~10m
2
) (Novak, 1987). The 

variability in beaver regional density across our study area is very high (approximately two 

orders of magnitude between the lowest and highest densities) and the environmental variables 

known to be important for beaver ecology are also highly variable across our study area. 

 

1.2.2 The natural history of beavers 

The North American beaver is a large semi-aquatic rodent with a broad distribution in North 

America. Its broad tolerance to temperature (-50
o
C to 38

o
C) allows it to live along the U.S.-

Mexican border as well as near the treeline in Québec and Alaska (Novak, 1987). Its habitat 

requirements are mostly based on sufficient food sources and perennial aquatic features (Novak, 

1987; Müller-Schwarze & Sun, 2003). Beavers can survive in regions where their preferred food 

species are uncommon or absent, but they cannot survive in areas where the water supply 

fluctuates or is fast moving (Novak, 1987). 

 

Beavers are ―choosy generalist‖ herbivores (Harper, 1969). They eat the leaves, twigs, and bark 

of woody plants, as well as many different kinds of terrestrial and aquatic herbaceous species 

(Jenkins, 1979). North American beavers prefer to eat trembling aspens (Populus tremuloides), 

willows (Salix spp.), cottonwoods (P. balsamifera), and alders (Alnus spp.) (Müller-Schwarze & 
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Sun, 2003). Although beavers use coniferous trees, they cannot survive for a prolonged period of 

time without deciduous trees and shrubs (Novak, 1987). Herbaceous species, when available, are 

preferred over woody species (Jenkins, 1979). However, beaver establishment is not likely 

limited by the actual biomass of herbaceous vegetation but rather by the total biomass of woody 

species as it is the only food source that can be hoarded in their winter food cache (Boyce, 1981). 

In general, beavers forage up to 50m from the water‘s edge (Traversy, 1976; Novak, 1987; 

Fryxell & Doucet, 1993), but they have been observed foraging up to 200m away from the water 

when food was scarce (Bradt, 1938; Hammond, 1943; Northcott, 1971). Based on field data in 

the James Bay area during my PhD, more than 99% of the trees cut by beavers where within 50m 

of the water (based on approximately 21 000 trees in 22 different locations; unpublished data). 

According to Jenkins (1979), the types of food species present may be less important in 

determining habitat quality than hydrologic and physiographic factors. 

 

1.3 Ecological models of human regional density in the United States and 

across the globe 

 

1.3.1 Rationale 

Our knowledge of the human species is obviously greater than our knowledge of any other 

species. Despite the fact that human population data are generally available at the national level, 

the Center for International Earth Science Information Network (CIESIN) of the Earth Institute 

at Columbia University, in partnership with the Centro Internacional de Agricultura Tropical 

(CIAT), has developed a geo-referenced dataset of regional human density across the globe, 

called Gridded Population of the World (GPW). The latest version of GPW is based on nearly 

400 000 human censuses with an average spatial resolution of 18km (CIESIN, 2005). 

Furthermore, in collaboration with the Food and Agriculture Organization of the United Nations 

(FAO), CIESIN has developed a dataset of forecasted regional human density for 2015. This 

human regional density forecast is a combination of the historical demographic dynamics 

observed in the GPW analyses and the United Nations Population Division demographic forecast 

based on standard demographic statistics (i.e. fertility and mortality rates as well as the age-

structure of human populations). 
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The United States decennial census provides county-based human density since 1790, as 

mandated by the Article 1, Section 2, of the United States Constitution: "The actual Enumeration 

shall be made within three Years after the first Meeting of the Congress of the United States, and 

within every subsequent Term of ten Years, in such Manner as they shall by Law direct‖. 

Between 1900 and 2000, the number of U.S. counties increased from 3063 to 3141 and the 

geographical boundaries of some counties shifted. Given the difficulty in comparing population 

figures between censuses when county boundaries are shifting (Rayer, 2007), we restricted our 

analyses to the 2728 counties that kept the same geographical boundaries and that had census 

data available throughout the last century. Such partial sampling of U.S. censuses during the 20
th
 

century has been shown to adequately represent the demographic patterns of the whole country 

(Rayer, 2004). 

 

Beyond the environmental data available for modelling the ecological niche of other species (e.g. 

climate conditions, topography, hydrological features, etc.), we also have access to a plethora of 

other environmental and socio-economical variables likely to influence human regional density. 

For example, the Global Environment Outlook of the United Nations Environment Programme 

provides nearly 700 datasets of variables that may influence human regional density (available at 

http://geodata.grid.unep.ch/results.php). Furthermore, the United States decennial census 

provides a socio-economical portrait of each county which can be used, along with historical 

climate conditions, to create multiple historical ecological niche models of human regional 

density. 

 

1.3.2 The natural history of humans 

Humans (Homo sapiens) are a large primate with a nearly worldwide distribution. Their highly 

developed brain, considerable manual dexterity, and high vulnerability to predation have led to 

the development of numerous tools and complex social relationships. Most humans consume 

plant-based diets that are supplemented with meat, with nearly all of the diet coming from 

domesticated plants (e.g., rice, corn) and animals (e.g., poultry, cattle, swine). Agricultural plant 

production and animal herding are thus critical to the sustenance of human populations, and 

international trade and distribution networks mean that food is routinely consumed far away 

from where it is produced (Wright 2004). The importance of trade in human society has led to 
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extensive labour specialization and intensive wage economies. Most humans live within a built 

environment, sleeping, eating, and working in climate-controlled buildings and relying on 

running water, electricity for light and appliances, and fossil fuels for transportation, agriculture, 

and, in some cases, production of electricity. The heterogeneity of contemporary human ecology 

spans many spatial and temporal scales and is driven by a complex suite of factors: from regional 

self-reliance to global markets, from rapid demographic growth to declining populations, from 

peaceful prosperity to armed conflicts and economical collapses, from pristine environmental 

conditions to extensively impacted environmental conditions. While history has shown that fate 

of human societies can be influenced by many factors (Diamond, 2004), the importance of 

climate conditions cannot be neglected (Weiss et al., 1993; Hodell et al., 1995; ChepstowLusty 

et al., 1996; Cullen et al., 2000; deMenocal, 2001; Mayewski et al., 2004; Dearing et al., 2006; 

Kuper & Kropelin, 2006; Yasuda, 2008).  
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Chapter 2 : Alternative niche dimensions, niche models and climate 

models as contributors to uncertainty in beaver responses to climate 

change  
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2.1 Abstract 

Ecological forecasts under climate change are essential to inform biodiversity conservation plans 

but the nearly infinite number of forecasts that can be created requires a robust framework to 

assess the magnitude and source of uncertainty in ecological predictions. Uncertainty in 

ecological forecasts under climate change can arise from the climate and non-climate variables 

used to define a species‘ niche (niche dimensions), the statistical framework used to relate niche 

variables to distribution or density (niche models), and the global coupled models (GCMs) and 

emission scenarios used to predict future climates (climate simulations). Here we assess 

variability in the predicted influence of climate change on beaver (Castor canadensis) density in 

Québec, Canada, arising from alternative niche dimensions, niche models and climate 

simulations. Our analysis includes eight combinations of different niche dimensions, six of the 

most commonly used niche models, and four climate simulations. These four climate simulations 

were selected from 70 climate simulations using a novel, spatially-explicit selection approach to 

be representative of the range of forecasted climate conditions in our study area. According to a 

deviation analysis and a full factorial ANOVA of 30,912 alternative regional beaver density 

forecasts, alternative climate simulations contribute the least and most spatially homogenous 

variability, whereas alternative niche dimensions contribute the most, and most spatially 

heterogeneous, variability in beaver density. These results contradict previous studies based on 

occurrence data, possibly due to the higher statistical power of density data to detect regional 

ecological patterns and the availability of multiple, ecologically relevant variables to define the 

niche of beaver. Although the continued refinement of niche models and climate simulations is 

essential in climate change research, our results suggest that an even more important focus is the 

availability and selection of appropriate ecological variables used to model the ecological niche 

of species. 

2.2 Introduction 

Understanding the environmental determinants limiting species distributions and regional 

densities is a central theme in ecology and biogeography. It has also become a priority in 

biodiversity conservation planning given the predicted impacts of climate change on biological 

systems (Lovejoy &  Hannah, 2005; Butchart et al., 2010; Hannah, 2010). Ecological niche 

modelling is an increasingly common tool for predicting species responses to climate change 

based on the assumption that the current environmental niche occupied by a species can be used 
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to anticipate its response to environmental change (Peterson, 2003; Thuiller et al., 2005; Austin, 

2007; Thuiller, 2007).  

 

The use of ecological niche modelling in the emerging field of climate change ecology (Hannah, 

2010) has been heavily criticized both on its fundamental premises and on the uncertainties 

underlying ecological forecasts (Loiselle et al., 2003; Araújo &  Guisan, 2006; Beale et al., 

2008; Haegeman &  Etienne, 2010). While some of these criticisms are still unanswered, others 

have been addressed by recent development in ecological niche modelling. For example, recent 

advances in statistical models describing the current ecological niche of a species (reviewed in 

Elith et al., 2006; see also Haegeman &  Etienne, 2010) have greatly improved the predictive 

power of ecological niche models. While the predictive power of correlative statistical models is 

often positively related to the complexity of the underlying statistical framework (Elith et al., 

2006), the careful selection of explanatory variables with reliable datasets arguably remains the 

best way to insure that ecological niche models correspond to current ecological knowledge. 

 

The high predictive power of many ecological niche models based on climate conditions at 

continental scales (Root, 1988; Thuiller et al., 2004; Thuiller et al., 2005; Araujo et al., 2006) is 

not surprising given the well-recognized ecological importance of climate at large spatial scales 

(Whittaker, 1975; McGill, 2010). Accordingly, most ecological models predicting species 

responses to climate change tend to focus on the climatic determinants of species distribution and 

there is limited evidence that non-climatic variables are significantly influencing species 

distributions at large spatial scales (Pearson &  Dawson, 2003; Thuiller et al., 2004; Araújo &  

Luoto, 2007). However, ecological models of regional densities across a species‘ distribution can 

provide a much more powerful statistical framework to evaluate the relative ecological 

importance of climatic and non-climatic variables as regional densities vary greatly across 

species‘ distributions (Iverson et al., 2008; Rodenhouse et al., 2008; Jarema et al., 2009). 

Furthermore, regional patterns in non-climatic variables can sometimes supersede climate 

conditions as regional density determinants, for example in habitat specialists (MacArthur, 1972; 

Silvertown et al., 1999). We should therefore expect that, under climate change and across a 

species‘ distribution, ecological forecasts of regional densities will be much more influenced by 

the selection of non-climatic variables than ecological forecasts based on occurrence data. 
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The recent development of reliable non-climatic ecological datasets at high spatial resolution, 

ecological niche models, and climate change simulations has much contributed to the general 

recognition of ecological forecasts under climate change as useful tools in biodiversity 

conservation plans. Although ensemble forecasting (Araujo &  New, 2007) provides the most 

likely forecast from a suite of equally probable models, ecological forecasts under climate 

change cannot be assumed to be equally probable given the substantial variation arising from the 

uncertainties in both their statistical framework and underlying data. We herein discuss each 

source of uncertainty and its influence in ecological climate change forecasts by referring to 

―niche dimensions‖ as the climate and non-climate variables used to define a species‘ niche, 

―niche models‖ as the statistical framework used to relate niche variables to distribution or 

density, and ―climate simulations‖ as the global coupled models (GCMs) and emission scenarios 

used to predict future climates. 

 

The uncertainty arising from the selection of ecological dimensions is a function of 1) the 

concordance between the suite of variables selected and the true determinants of a species‘ 

distribution or regional densities and 2) the quality of the datasets used to reflect the spatial 

variation of these variables. Accordingly, we should expect greater niche dimension uncertainties 

for species with limited ecological information, for studies using the same ecological variables to 

provide ecological forecasts under climate change for a large number of species, and for studies 

based on ecological datasets of questionable accuracy, either in terms of sampling design or 

spatial resolution. 

 

Most ecological niche models are correlative and their assumptions, parameterizations and 

algorithms are significant sources of uncertainty. While the framework of the distribution of the 

response or the definitions of fitted functions between variables are specific to each model, 

others processes can be explored by researchers, such as the weight of variable contribution or 

the presence of interactions (Guisan &  Zimmermann, 2000; Elith et al., 2006; Lawler et al., 

2006; Pearson et al., 2006; Austin, 2007). Although it is important to select niche models that 

can accurately predict current species distribution limits or regional densities, we cannot 

extrapolate the current predictive power of niche models to forecast models under future 
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ecological conditions. The selection of a ―best niche model‖ is therefore impossible in ecological 

forecasts under climate change. 

 

Climate simulation uncertainties stem from many stages in climate modelling. One of the most 

important sources of uncertainties, named forcing uncertainty, represents the extant of future 

greenhouse gas emissions. Given the impossibility to predict socio-economical and political 

decisions, forcing uncertainty has lead to the development of emission scenarios representing a 

realistic range of future greenhouse gas emissions (Nakicenovic and Swart 2000). Climate 

uncertainty is further compounded by the imperfections of GCMs. The unique strategy used by 

each GCM to deal with our limited theoretical understanding of some climate processes, 

uncertainties in parameterization, as well as structural model uncertainties (i.e. how to accurately 

describe a process) implies that even climate simulations based on a given GCM and a given 

emission scenario are unique (Knutti et al. 2010). 

 

It has been suggested that the variability in ecological forecasts under climate change of species‘ 

distribution limits is much more influenced by niche model uncertainties than by niche 

dimension or climate simulation uncertainties (Thuiller, 2004; Pearson et al., 2006; Dormann et 

al., 2008; Diniz-Filho et al., 2009; Buisson et al., 2010; but see Peterson &  Nakazawa, 2008; 

Syphard &  Franklin, 2009; Synes &  Osborne, 2011). However, these is a need to evaluate the 

relative influence of niche dimensions, niche models, and climate simulations in the variability 

of ecological forecasts under climate change of regional densities, because 1) the above-cited 

studies were based on occurrence data rather than regional densities, 2) predicting regional 

densities can be much more sensitive to niche dimension uncertainties than predicting 

distribution limits, and 3) changes in regional densities can have much more important 

implications for conservation planning than distribution shifts. 

 

The broad geographical coverage and reliability of beaver regional densities in the province of 

Québec, Canada (Jarema et al., 2009), combined with the exhaustive knowledge of beaver 

natural history (Müller-Schwarze &  Sun, 2003) and the availability of reliable datasets with high 

spatial resolution for a wide range of potential ecological determinants of beaver regional 

densities provide an ideal system to contrast the variability in ecological forecasts under climate 
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change of regional densities arising from niche dimensions, niche models, and climate 

simulations. Our study area covers nearly half the latitudinal range of the distribution of beavers 

in North America and regional beaver densities were estimated in 161 sampling units 

representing approximately 75% of the geographical extent of our study area (Jarema et al., 

2009). Based on the hypothesis that ecological niche models using regional densities data have 

more statistical power to assess the influence of non-climatic variables than similar models using 

occurrence data, we predict that the variability arising from niche dimensions will be larger than 

the variability arising from both climate simulations and niche models. Additionally, given the 

broad geographical distribution and generalist nature of beavers, we should expect that the 

results from other studies based on regional densities of species less-known and/or more 

specialist than beavers would show an even stronger influence of niche dimensions in the 

variability of their climate change ecological forecasts. 

 

2.3 Methods 

Research design 

Here we evaluate the variability in ecological forecasts under climate change of regional beaver 

densities arising from niche dimensions, niche models, and climate simulations in the province 

of Québec, Canada (see Fig. 2.1 for a representation of our study design). We created eight 

combinations of niche dimensions where climate variables are combined with topographical, 

hydrological, and forest cover variables. Six well-known niche models were selected for their 

high predictive power of current regional beaver density. We selected four climate simulations 

from a set of 70 climate simulations with an unbiased method minimizing the number of climate 

simulations required to describe the range of possible future climate conditions forecasted in our 

study area. We used a split-sample procedure to calibrate and evaluate the 48 models of current 

beaver regional density (eight niche dimension models x six niche models) and repeated this 

procedure a 100 times to reduce biases from this random data selection. Similarly, we combined 

these 48 models with the four climate simulations to obtain 192 X 100 forecasted regional 

densities. This experimental design allowed us to assess the variability in ecological forecasts 

under climate change of regional beaver densities arising from niche dimensions, niche models, 

and climate simulations with a full-factorial ANOVA. We also compared the correlation 

coefficients of forecasted beaver density at each sampling unit within sources of uncertainties. 
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We finally estimated the deviation in forecasted beaver density change at each sampling unit 

from the mean forecasted beaver density change within a source of uncertainties after removing 

the variability arising from the two other source of uncertainties using the ensemble forecasting 

technique (Araujo &  New, 2007). The median and range of deviations in forecasted beaver 

density across sampling units provide a consensual metric to evaluate the variability in 

ecological forecasts under climate change both within and across niche dimensions, niche 

models, and climate simulations. 

 

Beaver regional density data 

We estimated beaver regional densities by combining beaver colony abundance data from 

helicopter surveys and vector maps of the 161 sampled areas (Fig. 2.2, see Jarema et al., 2009) 

for details). We used the latitude and longitude of the centroid for each of the 161 beaver density 

polygons as the spatial coordinates in all ecological niche models and square root transformed 

beaver density data to normalize their distribution. 

 

Climate data 

We used long term average climate data for the present period (1961-1990) interpolated from 

weather stations based on Anusplin thin-plate splines (Rehfeldt et al., 2006) to represent current 

climate conditions. The data were downloaded from the US forest service 

(http://forest.moscowfsl.wsu.edu/climate/) at a resolution of 0.0083 decimal degrees (~1km), and 

subsequently averaged in 20km x 20km grid cells across the province of Québec. For each 

beaver density polygon, we averaged both average annual temperature (
o
C) and total annual 

precipitation (mm) across all grid cells inside the perimeter of the polygon. 

 

Future climate conditions were obtained through the Program for Climate Model Diagnosis and 

Intercomparison (PCMDI, (Meehl et al., 2007) and the Canadian Regional Climate Model 

(Music &  Caya, 2007). The PCMDI data are available from their website 

(http://www.pcmdi.llnl.gov/ipcc/about_ipcc.php). These climate simulations have been endorsed 

by the International Panel on Climate Change and form the basis of its 4
th

 assessment report 

(IPCC, 2007). The 70 simulations were divided more or less equally between emissions 

scenarios, containing 25 A1b simulations, 23 A2 simulations, and 22 b1 simulations (table 2.8). 
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We used the 2071-2100 temporal horizon, referred herein as the 2080 horizon, for all climate 

simulations to perform our analysis. 

 

Each GCM has inherent biases that can be estimated by comparing its predicted climate for an 

historical period with climate observations. We adjusted all climate simulations by using the 

―delta‖, or ―change field‖ method (Houghton et al., 2001), where the difference between future 

and current predicted climate data from a given climate simulation is added to real current 

climate data (i.e. weather station average 1961-1990). Normalizing the climate simulations with 

the delta method assumes that their intrinsic biases, obtained by comparing their output with 

historical data, will remain the same in the future. It is likely that the biases of some climate 

simulations are not temporally stable, but the delta method nonetheless reduces the disparities 

between climate simulation outputs. Due to the relatively coarse and variable spatial resolution 

of the climate simulations (~250km per side on average for PCMDI GCMs and ~45km for 

CRCM4), we used a linear Delaunay triangulation interpolation method to estimate climate 

values for the centroids of the 20km x 20km grid cells.   

 

Climate models 

We contrasted the 2080 climate forecasts of 70 climate simulations in order to select four climate 

simulations representing the range of forecasted temperature and precipitation changes in our 

study area (cold/dry, cold/wet, warm/dry, warm/wet). We first averaged the temperature and 

precipitation changes in all grid cells across the province of Québec for each climate simulation 

to plot bivariate density ellipses describing the variability in forecasted temperature and 

precipitation changes across climate simulations. We then selected four highly divergent but 

realistic climate simulations after excluding climate simulations located beyond the 0.75 

confidence interval density ellipse. 

 

Niche dimension models 

We selected six non-climatic ecological variables from a large suite of variables (Table 2.7) by 

excluding variables with extreme distributions (e.g. uniform or strongly exponential) and then by 

choosing a set of variables with low colinearity that were likely ecologically meaningful based 

on current knowledge of beaver natural history (Müller-Schwarze &  Sun, 2003). We categorized 
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these variables as forest cover, hydrological features, or topographical features, and used these 

categories rather than the individual variables to define the niche dimensions (i.e. a model based 

on hydrological features cannot be parameterized with only one of the two hydrological 

variables) (see Table 2.1). All proportional variables were arcsine square root transformed to 

normalize their distribution. Given the imperative inclusion of climate variables as a dimension 

in our niche models, there are eight niche dimension models that can be contrasted (a climate-

only model, three models where climate variables are combined with either one or two non-

climate variable categories, and one model with all the categories; see Fig. 2.1). 

 

Niche models 

We chose four regression methods (generalized linear models (GLM), generalized additive 

models (GAM), multivariate adaptive regression splines (MARS), and regression tree analysis 

(RTA)) and two machine learning methods (boosted regression trees (BRT) and random forests 

(RF)). A comprehensive description of these models can be found elsewhere (Elith et al., 2006; 

Heikkinen et al., 2006). 

 

Model predictive power 

We evaluated the predictive power of the 48 models of current beaver regional density (Fig. 2.1) 

by comparing predicted and observed beaver regional densities in 20% of the sampling units. We 

predicted beaver regional densities with a calibration set using 80% of the sampling units (Fig. 

2.2). To reduce biases arising from this random data selection, the split-sample procedure was 

repeated 100 times and we used the same sampling units among calibration-evaluation sets for 

all the combination of niche models and niche dimensions. 

 

Forecasting beaver density change 

We used the climate conditions forecasted by the four climate simulations to predict beaver 

regional density in 2080 for each of the 100 repetitions of the 48 combinations of niche 

dimensions and models of current beaver density. In order to minimize the variability arising 

from repetitions poorly predicting current beaver regional densities, we averaged the forecasted 

beaver densities at each of the 161 sampling units by weighting the 100 repetitions by their 

respective R
2
 (Thuiller, 2004; Araujo et al., 2006; Marmion et al., 2009) for each of the 192 
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forecasts (eight niche dimension models x six niche models x four climate simulations). We were 

thus able to estimate the change in beaver density at each sampling unit by subtracting the 

predicted current beaver density for each of the 48 combinations of niche models and niche 

dimensions from the 192 beaver density forecasts arising from the combination of these 48 

models with four climate simulations (Fig. 2.1). 

 

Variability in forecasted beaver density arising from model selection 

We used three methods to evaluate the variability in forecasted beaver density arising from the 

choice of niche dimensions, niche models, and climate simulations. We first compared the 

correlation coefficients of predicted beaver density in 2080 across the 161 sampling units within 

each source of uncertainties. We then estimated, for each sub-model and sampling unit, the 

deviation in predicted beaver density change by subtracting its forecasted beaver density change 

from the averaged forecasted beaver density change across other sub-models after removing the 

variability arising from the two other model types by the ensemble forecasting technique (Araujo 

&  New, 2007). For example, the deviation at a given sampling unit for the cold/dry climate 

model is the difference between its forecasted beaver density change and the averaged forecasted 

beaver density change across the four climate models under an ensemble forecasting of the six 

niche models and eight niche dimension models. Based on these 161 deviations estimates, we 

estimated both the central tendency and dispersion in beaver density change arising from the 

choice of niche dimensions, niche models, and climate simulations. We used the highest 

difference in median deviation between sub-models to represent the central tendency and the 

highest difference between the 25% and 75% quantiles to represent the dispersion. We also 

estimated the proportion of the variance explained by each type of models with a full factorial 

ANOVA based on all replications of all models at all sampling units (n = 30 912, i.e. 6 x 8 x 4 x 

161) in order to insure that the ensemble forecasting method used in our deviation analysis does 

not bias our results. 
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2.4 Results 

Selection of climate simulations  

The climate forecasts for 2080 obtained from the 70 climate simulations used in this study 

suggest that both the average annual temperature and the total annual precipitation will, on 

average across all climate simulations, increase across the province of Québec by 4.3
 o

C (range: 

2-8 
o
C) and 120 mm (range: 50-225 mm) (Table 2.8). We contrasted the forecasted changes 

obtained by the 70 climate simulations with a bivariate density ellipse in order to select four 

climate simulations near the 0.75 confidence interval ellipse to represent the four combinations 

of cold/warm and dry/wet climate simulations used in our analysis (Fig. 2.3). 

 

Predictive power of current beaver density 

The 48 models of current beaver regional densities created by combining the eight niche 

dimension models and the six niche models explained about half the variation in current beaver 

regional densities in our study area (R
2
 range: 0.47-0.62) (table 2.2). The average explanatory 

power of niche models across niche dimension models was similar to the average explanatory 

power of niche dimensions models across niche models. 

 

Variability in forecasted beaver density across models 

The correlation coefficients of predicted beaver regional density in 2080 were highly variable 

across models (Tables 2.3-2.5), yet similar when averaged within model types (Table 2.6). The 

range of deviations in predicted beaver regional density changes across all sampling units was 

highest and most variable for niche dimension models and lowest and least variable for climate 

simulations (Fig. 2.4). The range of deviations based on the median value amongst niche 

dimension models was 210% larger than the one amongst niche models and 763% larger than the 

one amongst climate simulations. The range of deviations between the 25% and 75% quantiles 

amongst niche dimension models was 185% larger than the one amongst niche models and 345% 

larger than the one amongst climate simulations (Table 2.6). The proportion of variance 

explained by each model type across all 30 912 repetitions estimated with a full factorial 

ANOVA was consistent with our deviation analysis as niche dimension models explained 4.4 

times more variance than niche models and 11.2 times more variance than climate simulations 

(Table 2.6). 
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2.5 Discussion 

Both the full factorial ANOVA and deviation analysis used in this study suggest that the 

uncertainties in forecasted beaver regional densities are mostly driven by niche dimensions rather 

than niche models or climate simulations. Moreover, much of the spatial heterogeneity observed 

in forecasted beaver regional densities was related to niche dimensions in our deviation analysis 

based on ensemble forecasting. Incorporating ensemble forecasting techniques in our analysis 

was essential to detect such spatial heterogeneity given that the correlation coefficients between 

forecasted beaver regional densities at each sampling unit were highly variable within models 

(Table 2.3-2.5), but very similar across models (Table 2.6). 

 

Predictive power of current beaver density 

While the similarity in predictive power across models suggests that they are equally suitable to 

depict observed beaver regional densities, we cannot assume that these models will have the 

same predictive power under future climate conditions. However, such similarity provides a 

robust framework to assess the variability in forecasted beaver densities arising from the choice 

of niche dimensions, niche models, and climate simulations. The variability observed in our 

analysis is thus mostly caused by combining climate simulations, differing in the magnitude and 

spatial heterogeneity of their forecasted climate conditions, with equally suitable ecological 

niche models differing in their dimensions. 

 

Variability from climate simulations 

The variability in forecasted beaver density changes arising from climate simulations is much 

smaller, both in terms of central tendency and dispersion, than the variability arising from niche 

models and niche dimensions (Fig. 2.4), even though we used an analytical design that 

maximizes the variability arising from climate simulations. We first selected the most distant 

temporal horizon available (i.e. 2080) since the variability in ecological forecasts caused by 

climate simulations is expected to be positively correlated with the extent of temporal horizons 

(Buisson et al., 2010) as the uncertainties of climate simulations increases in a similar fashion 

(Stott &  Kettleborough, 2002). Furthermore, unlike the majority of previous studies arbitrarily 

choosing a few GCMs and emission scenarios (Thuiller, 2004; Briones et al., 2007; Jarema et al., 

2009), or the few studies using a large number of climate simulations (Durner et al., 2009; 
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Lawler et al., 2009), we contrasted a large suite of reliable climate simulations (Meehl et al., 

2007) to select a few highly divergent climate simulations (Fig. 2.3). The four climate 

simulations used in our analysis represent much of the variation of forecasted temperature and 

precipitation changes observed in this exhaustive set of climate simulations. We believe that 

performing such a climate simulation selection prior to an ensemble forecasting analysis can 

improve the confidence in ecological forecasts under climate change because it provides an 

accurate representation of the variability amongst available climate simulations while keeping 

the number of alternative ecological forecasts under climate change to a minimum. As more and 

more GCMs and their regional and downscaled derivatives (Hijmans, 2005; Rehfeldt et al., 

2006; Music &  Caya, 2007) are developed, ensemble forecasting methods become essential to 

provide an unbiased way to obtain ecological forecasts given the impossibility to judge the 

quality of forecasted climate conditions from climate simulations. On the other hand, the number 

of ecological forecasts under climate change models must reflect all the available climate 

simulations, niche models, and niche dimensions, and can rapidly become a computational and 

inferential burden for climate change ecologists. For example, our analysis required 192 models 

to forecast beaver regional densities using four highly divergent climate simulations from a set of 

70 climate simulations, whereas we would have had to create 3360 models to represent the full 

extent of climate simulations. Therefore, selecting a few highly divergent, but equally probable, 

climate simulations to perform ensemble forecasting may become a necessary procedure in 

climate change ecological research. 

 

Variability from niche models 

Forecasted beaver regional density changes were more variable across niche models than across 

climate simulations but less variable than across niche dimensions. Given the broad literature on 

the influence of niche models on the variability of ecological forecasts under climate change 

(Elith et al., 2006; Lawler et al., 2006; Iverson et al., 2008; Buisson et al., 2010), our analysis 

should be perceived as a case-study comparing the variability in forecasted beaver regional 

density changes arising from niche dimensions, niche models, and climate simulations rather 

than a formal assessment of the quality of the niche models that we used. Although emergent and 

promising niche models, such as geographically weighted regression (Fotheringham, 2002) may 

have provided additional insights on the potential impacts of climate change on beaver regional 
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densities in our study area, we limited our analysis to six of the most common niche models used 

in climate change ecological research. More importantly, the similar predictive power across our 

48 models of current regional densities insures that our variability analysis of forecasted regional 

density assess the uncertainties in ecological forecasts rather than the fit of ecological niche 

models.  

 

Variability from niche dimensions 

The much larger variability in forecasted regional beaver density changes arising from niche 

dimensions compared to climate simulations or niche models suggests that, although regional 

beaver densities have been shown to be strongly influenced by climate conditions (Jarema et al., 

2009), the inclusion of non-climatic ecological variables can drastically influence ecological 

forecasts under climate change of regional beaver densities. The major weakness in our analysis 

of niche dimensions is the assumption that non-climatic variables will not be influenced by 

climate change. While topography will not significantly change during this century, hydrological 

and forest cover variables will likely change with climate (Bégin &  Payette, 1988; Iverson et al., 

2008). We should nonetheless expect that the pace of the impacts of climate change on 

hydrological and forest cover variables will be much slower than the impacts of climate change 

on regional beaver densities given the broad distribution, generalist nature, and high dispersal 

capacities of beavers. More importantly, we maintained the hydrological and forest cover 

variables constant in our analysis to insure that the variability arising from climate simulations 

and niche dimensions would be independent given that forecasted hydrological and forest cover 

datasets would necessarily be strongly influenced by climate simulations. We predicted regional 

beaver densities under four climate change forecasts but stable hydrological and forest cover 

conditions in order to parsimoniously describe the variability arising from niche dimensions, 

niche models, and climate simulations, but acknowledge the potential insights of using 

forecasted explanatory variables in ecological forecasts under climate change. 

 

The variability in forecasted regional beaver densities arising from niche dimensions may also be 

caused by the number of explanatory variables we used. The correlative nature of ecological 

niche models and the colinearity between most ecological variables (although we selected 

explanatory variables in order to minimize their colinearities) imply that the variability in our 
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regional density forecasts may have been caused by spurious correlations (Simon, 1954). We did 

not however observe a pattern between the variability in forecasted regional beaver density 

changes and the number of explanatory variables across niche dimension models (as shown in 

Fig. 2.4 where niche dimension models are sorted by increasing number of explanatory 

variables). 

 

Importance of density data 

While our results are at odds with current climate change ecological literature (Thuiller, 2004; 

Pearson et al., 2006; Diniz-Filho et al., 2009; Buisson et al., 2010) by suggesting that the 

influence of niche dimensions is much stronger than the influence of niche models or climate 

simulations in ecological forecasts, we believe that such contradiction can be explained by the 

fact that previous studies forecasted species distribution shifts based on occurrence data whereas 

our analysis relies on regional densities. Since regional density data have obviously more 

statistical power than occurrence data to evaluate the regional influence of niche dimensions, 

niche models, and climate simulations across ecological forecasts under climate change, our 

results cannot falsify or challenge the validity of previous studies. Instead, our analysis should be 

seen as an initial case study demonstrating the importance of regional density data in climate 

change ecological research. The development and increased accessibility for existing 

geographically broad regional density datasets at high spatial resolution should thus be a priority 

in climate change ecological research in order to insure that climate change ecological 

predictions truly represent current ecological knowledge.  

 

Concluding remarks 

Although the optimization of niche dimensions, niche models, and climate simulations is much 

needed in climate change ecological research, the recent sophistication of climate simulations 

and niche models arguably suggests that the most productive avenue to improve ecological 

forecasts under climate change is by a more rigorous selection of the dimensions of the niche. 

While the variability in ecological forecasts under climate change arising from the choice of 

niche dimensions, niche models, and climate simulations is best assessed from regional density 

data, studies based on occurrence data should nonetheless carefully evaluate the importance of 

non-climatic ecological variables limiting species distributions. Our results cannot be 
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extrapolated to other species or regions, and, to our knowledge, previous studies based on 

regional density data have never evaluated the sources of variability in their ecological forecasts. 

Therefore, our analysis introduces the hypothesis that the sources of variability in ecological 

forecasts under climate change must be evaluated with regional density data. Finally, we also 

introduce the idea that, given the ever increasing availability of climate simulations, a sub-

sampling technique reflecting the range of potential future climate conditions across a large suite 

of climate simulations may become necessary in order to provide clear climate change ecological 

predictions based on a limited number of alternative climate simulations. 
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Table 2.1. Datasets and statistical models used to compare the uncertainties in forecasting beaver 

density in Québec, Canada, arising from the selection of niche dimension, niche model, and 

climate simulation. See the Material and methods section for details. 

 

Source of 

uncertainties 
Category Name 

Niche  dimension Climate (C) Average annual temperature 

  

Total annual precipitation 

 

Forest type (F) Deciduous cover 

  

Mixed cover 

  

Coniferous cover 

 

Hydrology (H) Lake density 

  

River density 

 

Topography (T) Proportion of area with a slope less than 10
o
 

Niche model 

 

Boosted regression (BR) 

  

General additive model (GAM) 

  

General linear model (GLM) 

  

Multivariate adaptive regression splines (MARS) 

  

Random forest (RF) 

  

Regression tree analysis (RTA) 

Climate simulation Cold/wet CCCMA_CGCM3_1 

 

Cold/dry CSIRO_MK3_5 

 

Warm/dry MIROC3_2_MEDRES 

 

Warm/wet CRCM_4.2.0 
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Table 2.2. Predictive power (R
2
) of all possible combinations between six niche models and eight 

niche dimension models of current beaver regional density in Québec, Canada. The R
2
 for each 

combination of niche models and niche dimension models is an average of 100 replications. The 

standard deviations of the R
2
 across the 100 replications ranged between 0.10 and 0.16 for the 48 

models and did not reveal any insightful patterns between niche models and niche dimension 

models. Niche dimensions are abbreviated based on the type of variables used: climate (C), 

forest cover (F), hydrological features (H), and topography (T). See the Material and methods 

section for details on the niche models. 

  BRT RF GLM GAM MARS RTA Average 

C 0.53 0.51 0.48 0.48 0.48 0.51 0.50 

CH 0.58 0.60 0.56 0.53 0.51 0.55 0.55 

CF 0.57 0.57 0.54 0.56 0.53 0.49 0.54 

CT 0.55 0.54 0.49 0.49 0.48 0.48 0.50 

CFH 0.60 0.62 0.62 0.59 0.53 0.53 0.58 

CFT 0.60 0.59 0.55 0.58 0.54 0.47 0.55 

CHT 0.60 0.59 0.57 0.55 0.51 0.51 0.55 

CFHT 0.59 0.61 0.61 0.56 0.52 0.49 0.56 

Average 0.58 0.58 0.55 0.54 0.51 0.50 0.54 
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Table 2.3. Correlation coefficients between forecasted beaver regional densities in 2080 based on 

four climate simulations under an ensemble forecast of six niche models eight niche dimension 

models. The correlation coefficients are based on 161 independent sampling units. 

 

 

Cold/wet Cold/dry Warm/dry 

Cold/dry 0.89 

  Warm/dry 0.25 0.52 

 Warm/wet 0.85 0.85 0.53 
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Table 2.4. Correlation coefficients between forecasted beaver regional densities in 2080 based on 

six niche models under an ensemble forecast of four climate simulations and eight niche 

dimension models. The correlation coefficients are based on 161 independent sampling units. 

 

 

BRT GAM GLM MARS RF 

GAM 0.73 

    GLM 0.29 0.73 

   MARS 0.59 0.91 0.83 

  RF 0.96 0.79 0.39 0.67 

 RTA 0.87 0.73 0.47 0.72 0.87 
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Table 2.5. Correlation coefficients between forecasted beaver regional densities in 2080 based on 

eight niche dimension models under an ensemble forecast of six niche models and four climate 

simulations. The correlation coefficients are based on 161 independent sampling units. 

Niche dimension models are abbreviated based on the type of variables used: climate (C), forest 

cover (F), hydrological features (H), and topography (T). 

 

 

C CF CH CT CFH CFT CHT 

CF 0.44 

      CH 0.47 0.58 

     CT 0.90 0.48 0.53 

    CFH 0.35 0.91 0.79 0.44 

   CFT 0.48 0.99 0.60 0.56 0.91 

  CHT 0.46 0.60 0.99 0.56 0.79 0.63 

 CFHT 0.38 0.90 0.79 0.48 0.99 0.92 0.79 
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Table 2.6. Indices of variability in 2080 forecasted beaver regional densities arising from the 

choice of niche dimension models, niche models, and climate models. Deviation range values, a 

metric of the magnitude in central tendency and variation, were estimated as the difference 

between the highest and lowest deviations across models for either the median value or between 

the highest 75% quantile and the lowest 25% quantile. The deviations observed between models 

were all significantly different (p < 0.001). The average correlation coefficients between 2080 

forecasted beaver regional densities are based on data in table 2.3-2.5. The proportion of the 

variance explained by each source of uncertainty is based on a full factorial ANOVA between 

eight niche parameterizations, six niche models, and four climate models (n=30 912) and all 

factors were highly significant (p < 0.001). 

 

 

Climate model Niche model Niche dimension 

Deviation median range 0.016 0.058 0.122 

Deviation 25-75% quantile range 0.051 0.095 0.176 

Average correlation coefficients 0.65 0.70 0.67 

Proportion of the variance explained 1.3% 3.3% 14.6% 
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Figure 2.1. Analytical framework to evaluate the variability in forecasted beaver regional density 

changes arising from the choice of niche dimensions, niche models, and climate simulations. We 

first created 48 models of current beaver regional densities representing all the possible 

combinations between eight niche dimension models and six niche models. We then used these 

48 models to create 192 unique forecasted beaver regional density models using four climate 

simulations. We repeated the 48 currently predicted and the 192 forecasted beaver regional 

density models a 100 times and averaged these repetitions within models using a weighting 

technique based on their R
2
. We evaluated the predictive power of the 48 models of current 

beaver regional density through a split-sample method where 80% of the sampling units was 

used for calibrating our models while the remaining sampling units were used to assess the fit 

between observed and currently predicted beaver density. We calculated beaver regional density 

changes based on the difference between forecasted and currently predicted beaver density, thus 

providing 30 912 unique forecasted beaver density changes across the 192 unique models and the 

161 surveyed regions in our study area. More details on the analytical models and sampling units 

can be found in Table 2.1 and Figure 2.2. 
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Figure 2.2. Beaver density in 161 surveyed areas across the Province of Québec, Canada. The 

four surveyed areas without beaver evidence (i.e. zero density) are represented by the symbol * 

(the southernmost surveyed area without beaver evidence is very small (55km
2
) and surrounded 

by a much larger surveyed area with visible borders on this figure for which the estimated beaver 

density is 0.07 colony/km
2
). The map at the bottom left corner of the figure shows the beaver 

distribution in North America in pale grey and the geographic coverage of our study in dark 

grey. The black line at the top of the figure represents the approximate beaver northern 

distribution limit in our study area. 
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Figure 2.3. Average change in average annual temperature (
o
C) and total annual precipitation 

(mm) in Québec, Canada, for 70 global coupled models (GCMs). Ellipses of bivariate confidence 

intervals at thresholds of 0.50, 0.75 and 0.90 are shown as dotted, dashed, and full lines, 

respectively. The four GCMs selected for our analysis, displayed as squares, are 

CCCMA_CGCM3_1 for cold/wet, CSIRO_MK3_5 for cold/dry, MIROC3_2_MEDRES for 

warm/dry, and CRCM_4.2.0 for warm/wet  (see table 2.8). 
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Figure 2.4. Boxplot of the deviation in 2080 forecasted beaver regional density change from climate model, niche model, and niche 

dimension based on 161 sampling locations. The whiskers represent the 10% and 90% percentiles whereas the dots represent the 5% 

and 95% percentiles. The niche dimensions are abbreviated based on the type of variables used: climate (C), forest cover (F), 

hydrological features (H), and topography (T). The computation of deviation and the nature of the different models are described in 

the Methods section. 
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2.8 Supplementary material 

 

Table 2.7. Description of the all the non-climate variables used in our analysis. We selected six 

of these non-climatic variables to represent the hydrological features, topography and forest 

cover in our ecological models (see Methods). This table is adapted from (Jarema, 2006). 
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Table 2.8. Average 2080 forecasted change in annual average temperature (δtavg) (
o
C) and total 

annual precipitation (δprec) (mm) in Québec, Canada, based on 70 climate simulations. The 

emission scenario (ES) and the GCM run were obtained from (Meehl et al., 2007; Music &  

Caya, 2007). The climate simulations used in our analysis are displayed in bold. 

GCM ES Run δtavg δprec 

cccma_cgcm3_1 a1b 1 4.6 151 

cccma_cgcm3_1 a2 1 5.7 204 

cccma_cgcm3_1 b1 1 2.9 93 

cccma_cgcm3_1 a1b 2 4.0 160 

cccma_cgcm3_1 a2 2 5.3 201 

cccma_cgcm3_1 b1 2 2.6 137 

cccma_cgcm3_1 a1b 3 4.2 159 

cccma_cgcm3_1 a2 3 5.8 229 

cccma_cgcm3_1 b1 3 2.6 121 

cccma_cgcm3_1_t63 a1b 1 5.3 182 

cccma_cgcm3_1_t63 b1 1 3.6 113 

cnrm_cm3 a1b 1 3.2 72 

cnrm_cm3 a2 1 4.4 97 

cnrm_cm3 b1 1 2.0 44 

csiro_mk3_0 a1b 1 2.9 75 

csiro_mk3_0 a2 1 4.5 112 

csiro_mk3_0 b1 1 1.9 48 

csiro_mk3_5 a1b 1 4.9 126 

csiro_mk3_5 a2 1 5.6 114 

csiro_mk3_5 b1 1 3.5 62 

gfdl_cm2_0 a1b 1 4.6 100 

gfdl_cm2_0 a2 1 5.1 94 

gfdl_cm2_0 b1 1 3.4 83 

giss_aom a1b 1 3.1 93 

giss_aom b1 1 2.3 56 

iap_fgoals1_0_g a1b 1 4.8 118 

iap_fgoals1_0_g b1 1 3.0 95 

iap_fgoals1_0_g a1b 2 5.2 107 

iap_fgoals1_0_g b1 2 3.5 81 

iap_fgoals1_0_g a1b 3 4.8 107 

iap_fgoals1_0_g b1 3 3.0 66 

ipsl_cm4 a1b 1 7.0 115 

ipsl_cm4 a2 1 8.2 143 

ipsl_cm4 b1 1 5.2 77 
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miroc3_2_hires a1b 1 7.7 210 

miroc3_2_hires b1 1 5.7 177 

miroc3_2_medres a1b 1 6.5 150 

miroc3_2_medres a2 1 7.5 154 

miroc3_2_medres b1 1 4.8 118 

miroc3_2_medres a1b 2 6.7 132 

miroc3_2_medres a2 2 7.5 96 

miroc3_2_medres b1 2 4.8 96 

miub_echo_g a1b 1 4.9 143 

miub_echo_g a2 1 5.4 133 

miub_echo_g b1 1 3.6 104 

miub_echo_g a1b 2 4.9 139 

miub_echo_g a2 2 5.4 150 

miub_echo_g b1 2 3.0 100 

miub_echo_g a1b 3 4.5 115 

miub_echo_g a2 3 5.3 172 

miub_echo_g b1 3 3.3 106 

mpi_echam5 a2 1 5.5 187 

mpi_echam5 b1 1 3.8 142 

mpi_echam5 a1b 4 5.3 183 

mri_cgcm2_3_2a a1b 1 3.8 90 

mri_cgcm2_3_2a a2 1 3.9 126 

mri_cgcm2_3_2a b1 1 2.7 98 

mri_cgcm2_3_2a a1b 2 3.1 102 

mri_cgcm2_3_2a a2 2 3.9 114 

mri_cgcm2_3_2a b1 2 2.6 102 

mri_cgcm2_3_2a a1b 3 3.5 107 

mri_cgcm2_3_2a a2 3 3.7 128 

mri_cgcm2_3_2a b1 3 2.5 86 

mri_cgcm2_3_2a a1b 4 3.5 100 

mri_cgcm2_3_2a a2 4 4.1 130 

mri_cgcm2_3_2a b1 4 2.6 53 

mri_cgcm2_3_2a a1b 5 3.8 117 

mri_cgcm2_3_2a a2 5 4.0 132 

mri_cgcm2_3_2a b1 5 2.5 97 

crcm_4.2.0 a2 adj 5.0 187 
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Linking statement 

 

In the previous chapter, I demonstrated that, contrary to current ideas found in the ecological 

literature related to climate change, the selection of predictors in ecological niche models can 

cause more uncertainties in ecological forecasts under climate change than the selection of 

ecological niche models or climate models. In the next chapter, I evaluate the usefulness of 

geographically weighted regression as an ecological niche model that provides a spatially-

explicit description of the influence of ecological predictors of beaver regional density from 

which it is possible to evaluate the relevance of the predictor selection used to model a species‘ 

niche based on current ecological knowledge.  
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Chapter 3 : Application of geographically weighted regression to 

ecological niche modelling of beaver density 
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3.1 Abstract 

The rapid development of ecological niche models to inform biodiversity planning in a changing 

climate should be accompanied with validation techniques to insure that these models are 

congruent with current ecological knowledge. Many ecological niche models are very efficient at 

explaining current variation in the presence or regional density of a species but reveal little about 

the ecological states and mechanisms contributing to presence and high abundance. Here we 

evaluate geographically weighted regression (GWR) models as an alternative niche modelling 

approach, by using the technique to model beaver (Castor canadensis) regional density in 

Québec, Canada. We use eight predictors of beaver regional density, reflecting aspects of 

climate, hydrology, forest cover, and topography that are known to be influential in beaver 

ecology. The influence of these different predictor variables, their collective predictive power, 

and model sensitivity to alternative parameterization is then compared between GWR models 

and six other commonly used ecological niche models. Based on 16 uniquely parameterized 

GWR models and 48 uniquely parameterized non-GWR models, we found that the explanatory 

power of GWR and non-GWR models were similar. The influence of annual average 

temperature was highest for both GWR and non-GWR models, but the influence of other 

predictors were much smaller in non-GWR models than in GWR models. More importantly, 

GWR models provide a visual representation of variation in standardized regression coefficients 

across the study area and the spatially-explicit influence of most predictors was highly congruent 

with current beaver ecological knowledge. Given that non-GWR models often provide a relative 

influence of predictors that is idiosyncratic, combining GWR models with other ecological niche 

models could improve our confidence in ecological forecasts by allowing more explicit 

regionalized comparisons with current ecological knowledge. 
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3.2 Introduction 

Understanding the environmental conditions that limit species‘ distributions and regional 

densities is essential for biodiversity conservation planning given the predicted impacts of 

climate change on biological systems (Butchart et al. 2010, Lovejoy and Hannah 2005). Given 

the increasing recognition of the importance of climate change, there has been a strong impetus 

in the field of ecological niche modelling to improve ecological predictions describing species‘ 

response to climate change based on the assumption that the current environmental niche 

occupied by a species can be used to anticipate its response to environmental change (Austin 

2007, Peterson 2003, Thuiller 2007, Thuiller et al. 2005). Promising advances have been made in 

ecological niche modelling but these models mostly focus on the climatic determinants of 

species distribution without giving much consideration to non-climatic variables related to land 

cover, topography, and hydrological features (Araújo and Luoto 2007, Pearson and Dawson 

2003). 

 

Given the important but non-falsifiable nature of climate change predictions, many studies have 

focused on assessing and minimizing uncertainties involved in ecological niche modelling. 

Promising advances have been made regarding the appropriate spatial scale of the datasets used 

(McGill 2010, Seo et al. 2009), the underlying theories and statistical frameworks of ecological 

niches (Elith et al. 2006), and the most reliable evaluation and averaging techniques of ecological 

niche models for providing a single best-informed prediction along with a measure of its 

uncertainty (Araujo and New 2007). However, little attention has been paid to the implications of 

selecting alternative ecological variables when modelling a species‘ ecological niche (Araújo and 

Luoto 2007, Peterson and Nakazawa 2008, Thuiller et al. 2009). Climate change research 

involving niche models have mostly focused on climate variables because they have strong 

predictive power (Brown 1995, Caughley et al. 1987, Stenseth et al. 2002, Whittaker 1975) and 

because detailed and highly refined future climate models are readily available (Meehl et al. 

2007). While the paucity and uncertainty of forecasted datasets of non-climate variables limit the 

use of these variables in ecological forecasts, their role in defining the distribution and 

abundance of species, at present and in the future, is likely far from trivial.   
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The use of ecological niche modelling in the emerging field of climate change ecology has been 

heavily criticized both on its fundamental premises and on the uncertainties underlying 

ecological forecasts (Araujo and Guisan 2006, Beale et al. 2008, Haegeman and Etienne 2010, 

Loiselle et al. 2003). One of the key criticisms of ecological niche models is that they are often 

perceived as a ―black box‖ where one can hardly assess the realism of the processes involved to 

transform the input (i.e., current ecological data) into an output (i.e., forecasted ecological data). 

While the ―black box‖ issue is not new in ecology, and is often considered valid when the output 

can be confirmed with observations, ecological forecasts under climate change cannot be 

validated for some time. Confidence in ecological forecasts under climate change therefore 

depends on whether they are recognized to be based on robust and explicit ecological 

mechanisms and the extent to which they quantify and communicate uncertainty in the 

predictions they generate. 

  

Ecological predictions under climate change mostly focus on the geographical distribution of 

species (Araujo et al. 2006, Broennimann et al. 2007, Thuiller et al. 2006) or, more rarely, on the 

regional density of that species across its distribution (Iverson and Prasad 1998, Jarema et al. 

2009). Most ecological niche models typically make their predictions by correlating the presence 

(or density) of a species with a suite of environmental variables and use this correlative model to 

predict the presence (or density) of that species based on forecasted environmental conditions. 

Some ecological niche models assume that environmental variables have a constant influence on 

a species in all parts of the species‘ range while other ecological niche models will allow the 

influence of the environmental variables to vary across the species distribution. Such spatial 

variability in the influence of an environmental variable, or spatial non-stationarity, is included 

in many recent ecological niche models (Fotheringham 2002, Haegeman and Etienne 2010, 

Lawler et al. 2006). For example, the influence of temperature or precipitation may be critical at 

the northern edge of the distribution for a tree species but not at its southern edge (Fang and 

Lechowicz 2006). Non-stationary ecological niche models generate spatially-explicit predictions 

of the importance of different variables in different parts of a species‘ range. Given these 

predictions can be tested with more regionally-focused and process-oriented studies that are so 

common in ecological research, non-stationary models tend to be more predictive and more 

thoroughly testable with contemporary ecological data than their stationary counterparts. The 



 

54 

 

predictability and testability of non-stationary ecological niche models becomes stronger yet 

when they are applied to regional density data rather than coarser presence only or presence-

absence data (Brown 1995). Furthermore, discrepancies between our current ecological 

knowledge of the species and non-stationary ecological niche models can be further investigated 

to either improve the ecological niche model or our ecological knowledge of the species.  

 

Although all non-stationary ecological niche models are based on spatially-explicit influence, 

metrics describing parameter influence are often idiosyncratic (i.e. relative to the influence of the 

other parameters included in the model) and difficult to interpret. Geographically weighted 

regression (GWR) (Fotheringham 2002, Fotheringham et al. 1996) is a non-stationary spatial 

regression technique that has rarely been applied in ecological research except as an explanatory 

method of spatial visualisation (Austin 2007, Wimberly et al. 2008). GWR offers a promising 

tool for creating non-stationary niche models because it generates spatially-explicit standardized 

regression coefficients (stdβ) that can be used to compare spatial variation in the influence of 

predictor variables between models across sets of predictors for a given species, or between 

models across species for a given predictor. Moreover, the stdβ can be contrasted with other 

studies using regression techniques whereas the relative importance obtained in most other 

ecological niche models cannot.  

 

Here we compare the predictive power and the spatial variability in predictor influence between 

GWR models and six ecological niche models commonly used in the literature using a 

geographically extensive dataset including 161 regional beaver densities and eight ecological 

variables in Québec, Canada. We then assess the robustness of GWR estimates of predictor 

influence under alternative parameterizations. We then compare the predictive power and the 

influence of climate predictors obtained either from a climate based model (GWRclimate) or from 

a model with all predictors (GWRall predictors) to assess the suitability of using climate based 

models to make ecological forecasts under climate change. We finally assess the extent to which 

spatial variation in predictor influence aligns with current ecological knowledge related to large 

scale determinants of beaver density in the landscape.  
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3.3 Methods 

Beaver regional density data 

Beaver regional density estimates, expressed as active beaver colonies per km
2
, were derived by 

combining active beaver colony abundance data from helicopter surveys and vector maps of the 

161 sampled areas (Fig. 3.1, see Jarema et al. 2009 for details). We used the latitude and 

longitude of the centroid for each of the 161 beaver density polygons as the spatial coordinates in 

all ecological niche models and square root transformed beaver density data to normalize their 

distribution. 

 

Climate variables 

We used long term average climate data for the present period (1961-1990) interpolated from 

weather stations based on Anusplin thin-plate splines (Rehfeldt et al. 2006) to represent current 

climate conditions. The data were downloaded from the US Forest Service 

(http://forest.moscowfsl.wsu.edu/climate/) at a resolution of 0.0083 decimal degrees (~1km). We 

then averaged both average annual temperature (
o
C) and total annual precipitation (mm) across 

each beaver density polygon (Fig. 3.1). 

 

Non climate variables 

We selected six non-climatic ecological variables from a large suite of variables (Table 3.3) by 

excluding variables with extreme distributions (e.g., uniform or strongly exponential) and then 

by choosing a set of variables with low colinearity that were likely ecologically meaningful 

based on current knowledge of beaver natural history (Müller-Schwarze and Sun 2003). These 

variables broadly reflect forest cover, hydrological features, and topography (Fig. 3.6). The 

hydrological variables were calculated in order to represent the proportion of suitable beaver 

foraging area in each sampling unit, conservatively based on the maximum inland foraging 

distance of beavers (200 m; Müller-Schwarze and Sun 2003). The variable Lake therefore 

represents, within each sampling unit, the relative area covered by a 200 m buffer around all the 

lakes depicted in national topographic digital maps (1: 250 000). Similarly, the variable River is 

the relative area covered by a 200 m buffer around all the rivers in these maps. We also 

estimated the variables related to forest cover and topography based on a 200 m buffer around 

water bodies given the limited importance of areas outside such buffer for beaver population 
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dynamics. The variable Topography represents the proportion of buffered areas with a slope less 

than 10
o
, and thus positive relationships between beaver density and Topography indicate high 

densities are associated with shallow topography. The three variables representing forest cover 

were similarly estimated as the proportion of buffered areas covered with Deciduous, 

Coniferous, or Mixed forests. Detailed methodology and primary datasets used to estimate these 

variables can be found in Jarema (2006). All non-climatic variables were arcsine square root 

transformed to normalize their distributions. 

 

Geographically weighted regression 

Geographically weighted regression (GWR) estimates spatial variability in local 

estimates of regression parameters by using the bi-square geographical weighting function 

(equation 1).  

 

      equation 1 

where w represents the weight of observed data, d is the distance between the observed data and 

the area where local regression parameters are estimated, and b is a threshold distance referred to 

as the bandwidth. We used an adaptive kernel of 30% for the bandwidth of all models. Local 

regression coefficients are estimated by equation 2: 

 

equation 2 

where X represents the matrix of predictors and W represents the matrix of geographical weights 

for each of the observed data used for a given location. Take, for example, a model with three 

predictors: average annual temperature (
o
C) (avgT), Topography (Topo), and River density, 

(River).The regression parameters can then be used to build a spatially-explicit predictive model 

of beaver densities as shown in equation 3: 

  

equation 3 
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Alternative ecological niche models 

We contrasted the variability in the influence of predictors of beaver regional density between 

GWR models and commonly used ecological niche models. We chose six widely used statistical 

models suitable for the continuous nature of regional density data. Specifically, we used four 

regression methods (generalized linear models (GLM), generalized additive models (GAM), 

multivariate adaptive regression splines (MARS), and regression tree analysis (RTA)) and two 

machine learning methods (boosted regression trees (BRT) and random forests (RF)). A 

comprehensive description of these models can be found elsewhere (Elith et al. 2006, Heikkinen 

et al. 2006).  

 

We used a bootstrapping technique to obtain a consistent metric of the influence of predictors 

across non-GWR models. For each combination of non-GWR models and predictors, we 

assessed the change in regional beaver density created by randomly changing the predictor 

values across sampling units. For example, the influence of river density in the GLM model 

based on all predictors was calculated by creating 100 datasets where the River at each sampling 

unit was replaced with a random value taken from the range of River values across all sampling 

units. We then used the correlation in predicted beaver density across sampling units between the 

observed dataset and the 100 randomly created datasets to obtain a metric of the influence of 

River in the GLM model of beaver density based on all predictors. Our estimates of predictor 

influences in non-GWR can thus be seen as a sensitivity metric assessing the changes in 

predicted beaver density from changing the value of one predictor while keeping the values of all 

other predictors constant. While the influence of predictors of beaver regional density obtained 

with non-GWR models cannot be directly compared to the stdβ obtained with GWR models, 

their standardized nature allows a coarse comparison of the relative influence of predictors 

between GWR and non-GWR models.  

 

Analytical design 

We estimated beaver regional density with GWR models based on all possible combinations of 

the eight predictors and compared their adj-R
2
 and the central tendency and dispersion in their 

estimated stdβ for all predictors in order to assess the sensitivity of GWR models with respect to 
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their parameterization. The stdβ of all predictors was then compared with the relative importance 

of these predictors estimated with alternative ecological niche models. We then contrasted the 

average stdβ of climate predictors between the GWR model including only climate predictors 

(GWRclimate) and the GWR model including all predictors (GWRall predictors) to evaluate the 

sensitivity of climate based models of regional beaver densities to the inclusion of many non-

climate predictors. We finally mapped the stdβ of climate predictors for the GWRclimate model 

and the GWRall predictors model to relate ecological niche model predictions of regional density 

correlates to current knowledge of beaver ecology. 

 

3.4 Results 

GWR models of regional beaver density 

The high colinearity and spatial homogeneity of some predictors reduced all possible 

combinations of the eight predictors of regional beaver density down to 16 GWR models (Table 

3.1). The 16 models explained between 62% and 84% (average 73%) of the variation in beaver 

regional densities. All models included at least one climate predictor and each predictor was used 

in seven or more models, providing an appropriate sample size to assess the within sampling unit 

variation in the predictor influence across models. 

 

Predictor influence across GWR models 

The average stdβ of each predictor across the 16 GWR models at each sampling unit suggests 

that regional beaver density is positively influenced by Tavg, Lake, Decid, and Mixed, but 

negatively influenced by Precip and Conif (Fig. 3.2). The influence of climate predictors of 

regional beaver density estimated with the two most divergent GWR models (GWRclimate and 

GWRall predictors) are broadly congruent with each other (Fig. 3.3) and with average predictor 

influence across the 16 GWR models (comparing Fig. 3.3 with Fig. 3.2). 

 

Non-GWR ecological niche models 

The six non-GWR ecological niche models explained between 52% and 91% (average 73%) of 

the variation in beaver regional densities (Table 3.2). Across all combinations of six modelling 

techniques and eight predictor variable sets, Tavg was consistently the most important predictor 

variable (Fig. 3.4). However, variability in the influence of Tavg across these different model 
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combinations was much greater than among alternate GWR models (comparing Fig. 3.4 with 

Fig. 3.3). 

 

Spatially-explicit ecological patterns 

The stdβ of climate predictors obtained with the GWRclimate model and the GWRall predictors models 

were broadly congruent both in terms of magnitude and spatial patterns (Fig. 3.5). The south-

western region, where beaver density is highest (see Fig. 3.1), has however spatially incongruent 

stdβ for most predictors. 

 

There was a general tendency for beaver density to be positively related to Tavg in the coldest 

parts of the province and negatively related to Tavg in the warmest, south-central parts of the 

province. Beaver density was also weakly but positively associated with a high prevalence of 

shallow topography in nearly all regions of the province. High collinearity between forest land 

cover and temperature made it difficult to disentangle their influence on beaver density. But if 

the influence of land cover variables is interpreted independent of climate variables, then high 

beaver density is negatively associated with Conifer, in most regions but particularly in south-

central Quebec, and positively associated with Mixed and Deciduous in most parts of the 

province. The amount of land area surrounding lakes and rivers within survey blocks did not 

emerge as a strongly positive or negative predictor of beaver density in Quebec. 

3.5 Discussion 

The variation in beaver regional densities across our study area was well explained by both 

GWR models and non-GWR models. The adjusted coefficient of determination of the 16 GWR 

models varied between 0.62 and 0.84 with an average of 0.73 whereas the 48 other ecological 

niche models had the same average adjusted coefficient of determination (0.73) but varied 

between 0.52 and 0.91. While the relative influence of predictors should not be compared 

between a poorly fit model and a well fit model, the broad similarity in the explanatory power of 

all models of current regional beaver density, combined with the large number of models used in 

this study, provide a sound framework for comparing models with alternative parameterizations. 

 

The relative influence of predictor variables varied between GWR models and non-GWR 

models. While the overwhelming influence of Tavg was consistent between GWR and non-GWR 
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models, the non-GWR models mainly suggested a weak influence of all the other predictors 

whereas the GWR models showed much more heterogeneity in the influence across predictors 

(Fig. 3.2 and Fig. 3.4).  The diminishing influence of Tavg observed when additional predictors 

were included in both GWR and non-GWR models illustrates the ecological relevance of 

incorporating non-climate predictors in ecological niche modelling (Peterson and Nakazawa 

2008). 

 

The non-stationarity nature of GWR models allows us to spatially visualise the influence of 

predictors of regional beaver density. The spatial patterns of the influence of climate predictors 

were very similar between the GWR model based only on climate predictors and the GWR 

model with all predictors (Fig. 3.5). The influence of all predictors of regional beaver density 

shown in figure 3.6 are broadly consistent with the current ecological knowledge of North 

American Beaver (Jarema 2006, Müller-Schwarze and Sun 2003, Novak 1987). The strong 

positive association between temperature and beaver density in the northern Quebec is consistent 

with the general idea that poleward range limits of temperate species are imposed by abiotic 

factors (Fang and Lechowicz 2006). In the particular case of beaver, the temperature-density 

association could result from climatic determinants of the ice free season, which determines the 

length of time beaver must rely on hoarded terrestrial vegetation (Milligan & Humphries, 2010). 

Alternatively, temperature variation may in fact be an abiotic proxy for biotic processes, such as 

differences in growth and post-harvest recovery of terrestrial and aquatic food sources that are 

too subtle to be reflected in coarse land cover classifications. The positive association between 

beaver density and the prevalence of mixed and deciduous forests, and the negative association 

between density and conifer forest, is consistent with the importance of deciduous vegetation in 

beaver diets. Beaver preference of deciduous vegetation over coniferous vegetation has been 

widely described by captive studies using cafeteria-style preference trials and field studies 

examining cut and not-cut tree stems (Fryxell and Doucet 1993). Furthermore, aerial surveys of 

the location of beaver lodges have also often described a positive association between the 

prevalence of active beaver colonies and the distribution of deciduous vegetation (Müller-

Schwarze and Sun 2003). However, the current study offers the first demonstration that these 

behavioural and habitat scale preferences translate into consistent large scale patterns of 

distribution and abundance of beaver populations with respect to predominant vegetation cover. 
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Given such scale-consistency tends to be the exception rather than the norm in ecology (Levin 

1992), this intuitive but noteworthy scale-consistency speaks to the importance of this aspect of 

beaver ecology and the effectiveness of non-stationary modeling techniques such as GWR in 

identifying these processes. The influence of Lake and River were most strongly positive in the 

Deciduous and Mixed forest of the southern part of the study area, which may be caused by the 

fact that, in a region where food is abundant, the availability of suitable habitat may limit the 

density of beaver. The influence of predictors in the south-western portion of our study area 

(where beaver densities are anomaly high) were at odds with current beaver ecological 

knowledge and this may be explained by the fact that ecological niche models have difficulties 

handling great disparities in densities (i.e. real observations but statistical outliers) over short 

distances. 

3.6 Conclusion 

Despite the consistent improvement of ecological niche models in representing actual species 

distribution or abundance, their framework provides little insight into the underlying ecological 

dynamics. We suggest that GWR can be used, in combination with other ecological niche 

models, to improve ecological niche models and their application to forecasting the impacts of 

climate change. Based on this study, GWR performed as well as many commonly used 

ecological niche models in predicting current regional density while also providing a spatially-

explicit description of the influence of each of the ecological predictor of the species‘ niche. 

Since GWR models provided standardized regression coefficients that can be contrasted with 

previous ecological research, we believe that GWR can shed some light on the other ―black 

boxes‖ obtained by standard ecological niche models. Furthermore, GWR models highlighted 

the importance of non-climate variables more than other ecological niche models, in line with 

current knowledge of beaver natural history. 

 

The similarity between our GWR models based on climate predictors and our GWR models 

based on all predictors also suggests that the inclusion of non-climate predictors may not be 

essential for creating ecological forecasts under climate change used in biodiversity planning. 

However, ecological forecasts based on both climate and non-climate predictors can provide 

additional insights if we have a good level of confidence in the direction and the magnitude of 

the impacts of climate change on non-climate predictors. For example, we can assume that 
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topography will remain stable in a changing climate, and it is likely that deciduous forest cover 

will increase in regions currently represented by mixed forest cover. Similar analyses are needed 

to assess the influence of non-climate variables in ecological forecast of the impacts of climate 

change on the distribution and regional densities of other species. 
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Table 3.1. Parameterization and explanatory power of 16 GWR models of current beaver 

regional density based on 161 sampling locations in Québec, Canada. The number of models 

including each predictor is shown at the bottom. The average adj-R
2
 and number of predictors 

across models are, respectively, 0.73 and 4.9. Predictors are average annual temperature (Tavg), 

total annual precipitation (Precip), river density (River), lake density (Lake), coniferous cover 

density (Conif), deciduous cover density (Decid), mixed cover density (Mixed) and density of 

slope lower than 10
0
 (Topo), see Methods for predictor descriptions. The model using all 

predictors (GWRall predictors) and the model with only climate predictors (GWRclimate) are in bold. 

 

Model Tavg Precip River Lake Conif Decid Mixed Topo adj-R2 

1   1 1 1 1 1 1 1 0.84 

2 1 1 1 1 1 1   1 0.79 

3 1 1 1 1 1 1 1 1 0.79 

4 1 1 1 1 1     1 0.78 

5 1 1 1 1   1 1 1 0.77 

6 1 1 1 1   1   1 0.77 

7 1 1     1 1 1 1 0.76 

8 1 1 1 1     1 1 0.76 

9 1 1 1 1       1 0.75 

10   1 1 1       1 0.72 

11   1     1 1 1 1 0.72 

12 1             1 0.70 

13 1               0.67 

14 1 1             0.66 

15 1 1 1 1 1   1   0.63 

16   1             0.62 

# of models 12 14 10 10 7 7 7 12   
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Table 3.2. Explanatory power (adj-R
2
) of six ecological niche models of current beaver regional 

density based on 161 sampling locations in Québec, Canada, based on alternative 

parameterizations. The average adj-R
2
 across the 48 models is 0.73. The ecological niche models 

are: boosted regression trees (BRT), generalized additive models (GAM), generalized linear 

models (GLM), multivariate adaptive regression splines (MARS), random forests (RF), and 

regression tree analysis (RTA). The parameterizations represent combinations of predictors 

related to climate conditions (C), forest cover (F), hydrological features (H), and topography (T). 

See Methods for details. 

Model CFHT CFH CHT CFT CH CF C 

BRT 0.78 0.77 0.77 0.77 0.76 0.75 0.67 

GAM 0.69 0.70 0.66 0.67 0.65 0.66 0.54 

GLM 0.69 0.69 0.64 0.64 0.63 0.63 0.52 

MARS 0.72 0.72 0.68 0.68 0.68 0.68 0.57 

RF 0.91 0.91 0.91 0.90 0.91 0.88 0.84 

RTA 0.83 0.81 0.77 0.74 0.76 0.74 0.65 

Average 0.82 0.82 0.80 0.78 0.80 0.76 0.68 



 

68 

 

 
 

Figure 3.1. Beaver density in 161 surveyed areas across the Province of Québec, Canada. The 

four surveyed areas without beaver evidence (i.e. zero density) are represented by the symbol * 

(the southernmost surveyed area without beaver evidence is very small (55km
2
) and surrounded 

by a much larger surveyed area with visible borders on this figure for which the estimated beaver 

density is 0.07 colony/km
2
). The map at the bottom left corner of the figure shows the beaver 

distribution in North America in pale grey and the geographic coverage of our study in dark 

grey. The black line at the top of the figure represents the approximate beaver northern 

distribution limit in our study area. 
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Figure 3.2. Boxplot of standardized regression coefficients (stdβ) at 161 sampling location in 

Québec, Canada. The stdβ coefficient at each sampling location represents the average stdβ 

coefficients obtained with 16 GWR models of current beaver density (see table 3.1). Predictors 

are average annual temperature (Tavg), total annual precipitation (Precip), river density (River), 

lake density (Lake), coniferous cover density (Conif), deciduous cover density (Decid), mixed 

cover density (Mixed) and density of slope lower than 10
0
 (Topo), see Methods for predictor 

descriptions. The whiskers represent the 10% and 90% percentiles whereas the dots represent the 

5% and 95% percentiles. 
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Figure 3.3. Boxplot of standardized regression coefficients (stdβ) for two GWR models of 

current beaver density at 161 sampling locations in Québec, Canada. The thick lines at the top of 

the figure differentiate the results from model 14 (climate predictors only) and model 3 (all 

predictors) as presented in Table 3.1. Predictors are average annual temperature (Tavg), total 

annual precipitation (Precip), river density (River), lake density (Lake), coniferous cover density 

(Conif), deciduous cover density (Decid), mixed cover density (Mixed) and density of slope 

lower than 10
0
 (Topo), see Methods for predictor descriptions. The whiskers represent the 10% 

and 90% percentiles whereas the dots represent the 5% and 95% percentiles. 
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Figure 3.4. Relative importance of predictors of current beaver density in ecological models with 

alternative parameterizations. The ecological models are based on a combination of predictors 

related to climate (C), forest cover (F), hydrological feature (H), and topography (F). The 

relative importance of each predictor within ecological models was estimated by averaging the 

relative importance estimated by six non-GWR ecological niche models. More specifically, we 

used a bootstrapping technique that randomly change the value of the predictors and used the 

change in predicted regional densities to assess the importance of predictors (see Methods). The 

error bars represent the standard deviations across the six species distribution models. Predictors 

are average annual temperature (Tavg), total annual precipitation (Precip), river density (River), 

lake density (Lake), coniferous cover density (Conif), deciduous cover density (Decid), mixed 

cover density (Mixed) and density of slope lower than 10
0
 (Topo), see Methods for predictor 

descriptions. 
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Figure 3.5. Standardized regression coefficients (stdβ) for two GWR models of beaver density 

(model 14 (climate predictors only) and model 3 (all predictors) as presented in Table 3.1) at 161 

sampling locations in Québec, Canada. The standardized nature of stdβ allow to directly compare 

the influence of predictors where negative values (shown in blue) represent a negative 

relationship between the predictor and beaver density and conversely for positive values (in red). 

The stdβ estimated by the GWRclimate model are boxed at the top of the figure whereas the other 

stdβ are from the GWRall predictors model. Predictors are average annual temperature (Tavg), total 

annual precipitation (Precip), river density (River), lake density (Lake), coniferous cover density 

(Coniferous), deciduous cover density (Deciduous), mixed cover density (Mixed) and density of 

slope lower than 10
0
 (Topography), see Methods for predictor descriptions. 
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3.11 Supplementary material 

 

Table 3.3. Description of the all the non-climate variables used in our analysis. We selected six 

of these non-climatic variables to represent the hydrological features, topography, and forest 

cover in our ecological models (see Methods). This table is adapted from (Jarema, 2006). 
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Figure 3.6. Spatial variability in predictor values used in our analyses. The colour ramp is standardized using quantiles where each quantile 

represents 16.6% sampling units. The smallest values are shown in blue whereas the highest values are shown in red. Predictors are average 

annual temperature (Tavg), total annual precipitation (Precip), river density (River), lake density (Lake), coniferous cover density (Conif), 

deciduous cover density (Decid), mixed cover density (Mixed) and density of slope lower than 10
0
 (Topo), see Methodsfor predictor 

descriptions.
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Linking statement 

 

The previous chapter demonstrated that geographically weighted regression (GWR) has the 

capacity to account for the spatial non-stationarity in the influence of predictors of beaver 

regional density and that GWR models were broadly congruent with current beaver 

ecological knowledge. In the next chapter, I evaluate the capacity of GWR models to produce 

ecological niche models of human regional density across the globe. I then use these models 

to create ecological forecasts of human regional density under climate change. I finally 

combine these ecological forecasts with demographic forecasts based on statistics of human 

vital rates to create an index of human vulnerability to climate change.  



 

76 

 

Chapter 4 : Geographic disparities and moral hazards in the 

predicted impacts of climate change on human populations 
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4.1 Abstract 

Aim It has been qualitatively understood for a long time that climate change will have widely 

varying effects on human well-being in different regions of the world. The spatial 

complexities underlying our relationship to climate and the geographical disparities in human 

demographic change have however precluded the development of global indices of the 

predicted regional impacts of climate change on humans. Humans will be most negatively 

impacted by climate change in regions where populations are strongly dependent on climate 

and favourable climatic conditions decline. Here we use the relationship between the 

distribution of human population density and climate as a basis to develop the first global 

index of predicted climate change impacts on human populations. 

Location Global. 

Methods We use spatially-explicit models of the contemporary relationship between human 

population density and climate along with forecasted climate change to predict climate 

vulnerabilities over the coming decades. We then globally represent regional disparities in 

human population dynamics estimated with our ecological niche model and with a 

demographic forecast and contrast these disparities with CO2 emissions data to quantitatively 

evaluate the notion of moral hazard in climate change policies. 

Results Strongly negative impacts of climate change are predicted in Central America, 

central South America, the Arabian Peninsula, south-east Asia and much of Africa. 

Importantly, the regions of greatest vulnerability are generally distant from the high latitude 

regions where the magnitude of climate change will be greatest. Furthermore, populations 

contributing the most to greenhouse gas emissions on a per capita basis are unlikely to 

experience the worst climate change impacts, satisfying the conditions for a moral hazard in 

climate change policies. 

Main conclusions Regionalized analysis of relationships between human density distribution 

and climate provides a novel framework for developing global indices of human vulnerability 

to climate change. The predicted consequences of climate change on human populations are 

correlated with the factors causing climate change at the regional level, providing quantitative 

support for many qualitative statements found in international climate change assessments. 

 

Key words climate change, climate vulnerability, demography, ecological niche model, 

human populations, geographically weighted regression, moral hazard. 

  

HEADER: Spatially-explicit impacts of climate change on human populations 
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4.2 Introduction 

Recent international assessments of the societal impacts of climate change repeatedly stress 

the importance of defining regional vulnerabilities to inform adaptation policies (World 

Health Organization [WHO], 2004; Patz et al., 2005; IPCC, 2007; Lobell et al., 2008; World 

Water Assessment Programme, 2009). The importance of geographic disparities in the impact 

of current climate variability on human populations has also received much attention with the 

2003 European heat wave (Poumadère et al., 2005; Chase et al., 2006), recent droughts in 

Australia (Horridge et al., 2005) and California (Service, 2009), and dramatic impacts on the 

traditional lifestyles of Inuit communities (Ford & Smit, 2004). Furthermore, there is strong 

evidence that climate change has played a major role in defining the history of human 

civilizations (Weiss et al., 1993; Kuper & Kropelin, 2006) and widespread scepticism that 

modern technology and globalization will globally alleviate the negative impacts of climate 

change (Zhang et al., 2007; Burke et al., 2009; Trouet et al., 2009). The complexity of 

regional dynamics underlying the coupled human-environment system has however restricted 

most climate vulnerability assessments to qualitative or regional approaches (Adger, 2006). 

Spatial variability in the magnitude and direction of climate change impacts makes it 

challenging but important to develop global indices of regional vulnerability to climate 

change (Dyson, 2005). 

 

Niche modelling is an increasingly common approach used by ecologists to predict species 

responses to climate change (Peterson, 2003; Austin, 2007). The approach assumes that a 

species response to climate change can be anticipated by modelling how environmental 

niches currently occupied by the species will contract, expand and/or move as a result of 

climate change (Austin, 2007). Application of niche modelling to predict the impacts of 

climate change on human populations is potentially problematic for many reasons, but most 

of these problems are not unique to humans. The possibility that the current distribution of 

humans reflects where humans choose to live not where they are capable of living, that the 

distribution of humans is dictated more by historical contingencies than current climate 

conditions, that any apparent relationship between human populations and climate is indirect 

and likely to be mediated by the distribution of resources, that the current association 

between humans and climate may not persist in a rapidly changing world, and that humans 

are too complex to model using simple associations between climate and distribution, are 

possibilities that also apply, albeit to a lesser degree, to all the non-human organisms that 

have been studied with ecological niche modelling. As a result, these potential limitations 
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have been widely discussed and debated in the ecological niche modelling literature in the 

context of other animals and plants (see reviews by Pearson & Dawson, 2003; Austin, 2007). 

Application of niche modelling to human populations can thus be informed by a large and 

growing literature focused on the complexities involved in modelling a wide range of species 

responses to climate change. Further because the assumptions and limitations involved are 

likely to be similar, at least in kind if not to the same degree, application of niche modelling 

to a species as widespread and well known as humans may also provide insight into the 

implicit logic and general limitations of niche modelling in ecology.  

 

Humans are globally distributed, but human population density is regionally variable. 

Accordingly, the distribution of human population density provides a more appropriate basis 

for niche modelling than the range distribution of human presence. However, because 

humans live in such a wide range of climate conditions and are socioeconomically diverse, 

the relationship between climate and human density is likely to differ in different parts of the 

world (Diamond, 2004; Fagan, 2004). For example, human population densities might be 

higher in cool localities in warm parts of the world or wet localities in dry parts of the world. 

Furthermore, the strength of association between climate and human populations is unlikely 

to be globally uniform, with human density more closely correlated with climate in some 

parts of the world than others. Finally, similar to the scale-dependence of many ecological 

patterns (Schneider, 2001; McGill, 2010), the nature of correlations between climate and 

human populations are likely to vary according to the scale of comparison. In particular, the 

local distribution of human population density (e.g., over scales of tens to hundreds of 

kilometres) is likely to be dictated by non-climatic and historical factors such as proximity to 

waterways, trade routes, and geological features, whereas across larger scales of comparisons 

(e.g., hundreds to thousands of kilometres) these factors are more likely to generate localized 

exceptions within a broader pattern of density distribution, which may be correlated with 

larger scale environmental gradients such as climate. These forms of spatial non-stationarity 

(Fotheringham et al., 1996) in the relationship between human populations and climate 

requires a spatially-explicit modelling approach, such as geographically weighted regression 

(Fotheringham, 2002), in which regression parameters have enough spatial flexibility to 

reflect regional differences in human-climate associations. The alternative of standard 

regression models is inherently imprecise because regional differences are treated as noise 

rather than informative spatial patterns. 
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Here we assess the potential impacts of climate change on human populations by combining 

current regional relationships between climate and human population density with predicted 

regional climate change (Fig. 4.1). The key assumption to this approach is that a) favourable 

climate conditions are currently associated with high population density and unfavourable 

climate conditions are associated with low population density and b) the impacts of climate 

change on human populations will be more severe where climate conditions currently 

associated with high population density decline rather than expand. These assumptions are 

not inconsistent with the existence of many additional non-climatic determinants of human 

population density such as land use and agricultural production, distance from trading routes, 

and natural resources (Small & Cohen, 2004; Nelson et al., 2006), nor of many additional 

non-climatic determinants of human vulnerability to climate change such as regional 

differences in exposure, sensitivity and resilience to climate change (Turner et al., 2003). But 

we do assume that the many and complex socioeconomic determinants of the distribution of 

human populations and their vulnerability to climate change are best considered not only in 

relation to how much climate is expected to change but also in the context of the match or 

mismatch between regional climate suitability and regional climate change.  

 

First, we empirically examine how much of the global variation in human population density 

can be explained by climate variables, which climate variables offer the most explanatory 

power, and the nature and extent of regional variation in relationships between climate and 

population density. Second, we examine the importance of agricultural production as a 

potential covariate in relationships between climate and human population density. Third, we 

develop a climate vulnerability index (CVI) by combining regional climate-density 

relationships with predicted regional climate change. High vulnerability is predicted for 

regions where climate change will cause a decline in conditions currently associated with 

high population density and an increase in conditions associated with low population density. 

Fourth, since regions with rapid population growth are likely to be most severely impacted by 

climate change (Raleigh & Urdal, 2007), we build on the CVI to develop a climate-

demography vulnerability index (CDVI) that also incorporates current demographic trends. In 

this case, high vulnerability is predicted for regions where a decline in climate conditions 

currently supporting high population density is combined with rapid population growth. 

Finally, we relate this climate-demography vulnerability index to current per capita 

greenhouse gas emissions as an initial quantification of potential moral hazards involved in 

climate change mitigation policies. If moral hazard represents a reduced incentive for actors 
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to minimize risk if they are unlikely to bear the most negative potential outcomes of their 

actions (cf. Dembe & Boden, 2000), then a negative correlation between the causes and 

potential consequences of climate change is consistent with a moral hazard (or at least a 

perverse incentive structure; Rauchhaus et al., 2009) in climate change mitigation.   

 

4.3 Methods 

Data source 

Human densities in 1990 and 2015 were obtained through the third revision of the Gridded 

Population of the World (GPW) dataset adjusted to United Nation national population size 

(CIESIN, 2005). The extrapolation methods in the GPW dataset is based on population data 

obtained in the most recent sub-national censuses from nearly 400 000 administrative units 

with average input resolution of 18 km and adjusted to national population sizes forecasted in 

2015 by the United Nations. We used a 1
o
 resolution grid describing 18 504 georeferenced 

human densities (Fig. 4.7). 

 

Climate data for current conditions (1950-2000 average) and general circulation model 

forecasts for 2050 were obtained from WorldClim, version 1.4 (Hijmans, 2005). We used the 

10 arc-minute resolution consisting of 587 000 data points and filtered the dataset through our 

georeferenced human dataset to obtain 15 842 pairs of climate and human data. The reduced 

sample size produced by combining both datasets is due to the spatial mismatch in available 

data for islands and coastal areas. 

 

Geographically weighted regression models 

We used geographically weighted regression (GWR) to describe the spatial non-stationarity 

nature of current human-climate relationship. Our statistical models correlate 1990 human 

densities with a few climate variables that are geographically weighted to allow spatial 

flexibility in their respective regression coefficients. Take, for example, a model with four 

predictors: annual mean temperature (
o
C) (Tavg), mean temperature diurnal range (

o
C) 

(Trange), total annual precipitation (mm) (Ptot), and precipitation seasonality (Psea). Current 

human-climate relationships are then predicted by the following spatially-explicit regression 

model: 

equation 1 
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Local regression coefficients are estimated as: 

equation 2 

 

where X represents the matrix of predictors and W represents the matrix of geographical 

weights for each of the observed data used at a given location. We used a bi-square 

geographical weighting function as shown in equation 3:  

 

equation 3 

 

where w represents the weight of observed datum, d is the distance between the observed 

datum and the area where local regression parameters are estimated, and b is a threshold 

distance referred to as the bandwidth. 

 

We assessed the predictive power of 19 climate variables at various bandwidths with the 

software SAM (Rangel et al., 2006). The bandwidth is limited to a minimum value by high 

spatial colinearity in predictor values while very large bandwidths cannot describe non-

stationary patterns. A bandwidth of 27
o
 (~3000km) was chosen to maximise overall fit of 

regression models and minimise idiosyncratic regional patterns (Fig. 4.8, Table 4.1, 4.2). We 

had to divide the global dataset in four regions (at 44
o
 and 94

o
 of longitude and isolating the 

Americas; mapped on Fig. 4.3) because of computing limitations arising with large matrices 

(see equation 2). We adjusted the geographic coverage of the four datasets by overlapping 

data by 17
o
 to minimize edge effect in regression coefficient estimates around division lines. 

We selected two models with both high regional significance (defined in Table 4.2) and 

predictive power but with contrasting climate variables to insure that our results are robust to 

the selection of climate variables. 

 

Indirect influence of agriculture 

We evaluated the importance of agriculture as an indirect predictor of human density by 

modeling human density with both climate and agricultural variables. Based on Ramankutty 

et al. (2008) gridded agricultural dataset, we created an agricultural density index by 

combining the proportion of land used for crops and pastures in 2000. We contrasted the 

explanatory power and the standardized regression coefficients of climate variables obtained 

with a climate model and a climate-agriculture model.  
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Climate vulnerability index 

We forecasted human densities in 2050 with equation 1 using the regression coefficients from 

current human-climate models and climate forecast data for 2050 (Fig. 4.9). From this 

climate consistent forecast, we estimated regional human density annual growth rates 

between 1990 and 2050 as follow:  

equation 4 

 

Where λc represents climate consistent human density annual growth rate (referred herein as 

the climate vulnerability index, CVI) and hd represents predicted human density based on 

equation 1. 

 

Climate-demography vulnerability index 

We created a climate-demography vulnerability index (CDVI) reflecting the concordance 

between climate consistent human density annual growth rates (λc from equation 4) and 

human density annual growth rates between 1990 and 2015 based on demographic models 

(λd) (Fig. 4.11). We calculated λd with equation 4 taking into account the different temporal 

horizon and had to limit its geographical coverage to regions of non-zero human density in 

the 1990 human density dataset. The CDVI is thus: 

equation 5 

 

Regional CDVI values are consequently positive where climate consistent human density 

annual growth rates are lower than human density annual growth rates predicted by 

demographic models.  

 

Moral hazard 

We used a linear regression model to evaluate the relationship between the cause and the 

predicted consequence of climate change. Given the lack of gridded greenhouse gas emission 

dataset, we defined the cause of climate change based on national per capita CO2 emissions in 

2006 from the International Energy Association (IEA) estimates under the sectorial approach 

(OECD/IEA, 2008). We transformed the IEA data to national per capita CO2 emissions using 

national population size and national boundaries in 2006 from UNPD (Fig. 4.12) (UNPD, 

2007). Excluded from this analysis are seventy-two nations, collectively representing less 

than 2.7% of the world population in 2006, with UN membership but without CO2 emission 
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data. We averaged gridded national CDVI values to test the moral hazard hypothesis with the 

following regression model where NPCE represents national per capita CO2 emission: 

 

Equation 6 

 

Climate forecast uncertainties 

To assess the robustness of CVI and CDVI to regional climate change uncertainties, we used 

two other sources of climate forecasts (CSIRO, HADCM3) in addition to the CCCMA 2a2 

forecast presented in the main text. In all cases, we used Worldclim climate data based on the 

A2 emission scenario and the 2050 horizon (Hijmans, 2005). 

 

4.4 Results 

Evaluation of the relationship between gridded global human density  and climate using 

geographically weighted regression reveals that approximately half of the global variation in 

human density can be accounted for by four climate variables (Table 4.2). Regions of high 

and low explanatory power were widely dispersed across the globe and not obviously related 

to population density or climate conditions (Fig. 4.2). The spatial pattern of climate-density 

residuals (actual density – climate predicted density) does not reveal large scale deviations in 

population density that are not accounted for by climate, but does indicate many localized 

areas where population density is much higher or lower than predicted from climate alone 

(Fig. 4.2). The spatial patterns of standardized regression coefficients relating climate 

predictors to population density are non-stationary (p-values < 0.001 across all models) with 

major continental isoclines of shifting coefficient signs (Fig. 4.3). In general, human 

population density tends to be negatively related to average annual temperature in warm parts 

of the world (e.g. northern South America and Africa in Fig. 4.3a) but positively related in 

cold parts of the world (e.g. high latitudes in Fig. 4.3a). Similarly, human population density 

tends to be negatively related to total annual precipitation in wet parts of the world (e.g. north 

eastern North America and South-east Asia in Fig. 4.3c) but positively related in dry parts of 

the world (e.g. central North America and the Middle East in Fig. 4.3c). This is not 

surprising, but the spatial change in relationships is not captured by most regression 

techniques given their stationary nature (Small & Cohen, 2004). 
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Agricultural influence 

The explanatory power of our climate model of current human density (adj-R
2
 = 58%) was 

similar to the one (adj-R
2
 = 61%) obtained by adding agricultural density (i.e., a combination 

of both crop and pasture density) as an additional predictor. Using crop density and pasture 

density as two separate and additional predictors incrementally  improved the explanatory 

power (adj-R
2
 = 67%). However, the four climate variables included in our model also 

explained considerable variation in crop density (adj-R
2
 = 61%) and pasture density (adj-R

2
 = 

57%), suggesting that human density is influenced by climate conditions and agricultural 

density in a highly collinear pattern. The standardized regression coefficients of the four 

climate variables from the climate-only and the climate-agriculture models were highly 

correlated (average Pearson‘s correlation coefficient of 0.93 (range 0.87-0.97) with an 

average slope of 0.82 (range 0.77-0.89)). Thus, although including agricultural density in our 

climate model decreases the explanatory power of climate predictors by about 20%, the 

regional patterns of climate variable regression coefficients remains unchanged (Fig. 4.3, 

4.13, 4.14). 

 

 Climate vulnerability index 

Regions with high CVI (i.e., where climate conditions currently associated with high 

population densities will shift towards climate conditions associated with low population 

densities) include central South America, the Middle East, and both eastern and southern 

Africa (Fig. 4.4). Regions with low CVI are, on the other hand, largely restricted to northern 

portions of the northern hemisphere.  Localized anomalies in predicted CVI near areas 

classified as having zero population density, such as central Brazil and central China, are 

artefacts caused by the increased sensitivity of growth rates estimated for very small 

predicted human densities. 

 

Climate-demography vulnerability index 

The CDVI magnifies the high CVI in regions where demographic forecasts of population 

growth are high such as central South America, the Arabian Peninsula, south-east Asia and 

much of Africa (Fig. 4.5). Regions with low CVI, including north-central North America, 

northern Europe, and central Asia, also tend to have the most favourable CDVI because most 

of these regions are experiencing stable or even declining demographic growth rates.  
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Model robustness 

We evaluated the robustness of our analyses with respect to the selection of predictors by 

comparing two models with contrasting sets of climate variables. The spatial patterns of 

standardized regression coefficients strongly differed between models (Fig. 4.3 and 4.15), but 

the spatial patterns of CVI and CDVI of both models were very similar (Fig. 4.4-4.5 and 4.16-

4.17). The CVI and CDVI were also robust to current uncertainties in forecasted climate 

change (Fig. 4.18-4.19). 

 

Moral hazard 

We found a significant negative correlation between national per capita CO2 emissions and 

national average CDVI supporting the moral hazard hypothesis that countries predicted to be 

most negatively impacted by climate change are contributing the least to greenhouse gas 

emissions (Fig. 4.6). The explanatory power of this relationship is relatively low (R
2
 = 28%) 

indicating substantial variation in predicted climate change impacts, at a national level, for a 

given per capita CO2 emission. 

 

4.5 Discussion 

The human impacts of climate change are likely to be most severe in parts of the world where 

current demographic growth is rapid and future climate change will amplify and expand 

conditions currently supporting low human densities. Our global analysis identifies hot and 

arid regions that will become hotter and drier in the future as particularly vulnerable. This 

prediction is far from surprising. Nevertheless, the observation that regions of greatest 

vulnerability are generally distant from the high latitude regions where the magnitude of 

climate change will be greatest and generally distinct from the nations responsible for most 

greenhouse gas emissions has important implications for climate adaptation and mitigation 

policies. On the other hand, our analysis indicates that many cold, low density parts of the 

world have the potential to support higher population densities in a climate changed future. 

 

Similar to most contemporary research on the ecological impacts of climate change using 

niche models (Austin et al. 1984; Guisan & Thuiller, 2005; Austin et al., 2006), the reliability 

of our analyses is a function of both data quality and underlying assumptions. The quality of 

current human density data (CIESIN, 2005) and global climate data (Hijmans et al., 2005) is 

likely to be very high at the spatial resolution used in this study. Further, our demonstration 
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that predicted patterns of climate vulnerability are highly congruent across two sets of climate 

predictors and three general circulation models, indicates that these predictions are robust to 

current uncertainties in forecasted climate change and climatic correlates of human density 

(Fig. 4.18). However, the adequacy of our underlying assumptions requires careful 

evaluation. The main criticisms of ecological niche models are that they assume species to be 

at quasi-equilibrium with current climate, that they sometimes interpret species-climate 

correlations as causal, and that they assume instantaneous responses to climate change 

(Pearson & Dawson, 2003; Hampe, 2004). We consider each of these assumptions in turn. 

 

Current human-climate relationships 

The complexities of human societies and the rapidity of their demographic and technological 

transitions make it unlikely that the distribution of human population density is at quasi-

equilibrium with current climate. However, a small number of climate variables account for a 

surprisingly high proportion of global variation in contemporary human density. The 

proportion of variance in current human density explained by our climate models varied 

between 40% and 60% with an average of 54% (Table 4.2). Such explanatory power is 

favourably comparable to climate modelling of other species. For example, Iverson et al. 

(2008) modeled the current abundance of 134 tree species in eastern United States based on 

38 climatic and non-climatic variables and the pseudo-R
2
 of their random forest models 

averaged 29% (standard deviation = 21%). The same research group also modeled 150 bird 

species in the same region based on climatic, elevation, and tree abundance variables and 

their mean model had a pseudo-R
2
 of 66% (standard deviation 15%; Rodenhouse et al., 

2008). If such predictive powers are considered to provide a satisfactory empirical basis to 

generate coarse initial predictions of bird and tree distributions in a climate changed future, 

then, a fortiori, our models suggest the same techniques can be usefully applied to humans 

(despite all of the events of recent centuries that could have served to decouple contemporary 

human density from contemporary climates). The capacity of climate conditions to predict 

the geographical distribution of human density has also been indirectly supported based on 

the relationships between climate, land-use, and human density across the old World and 

Australia (Beck & Seiber, 2010) The reason why our simple climate-density models 

performed well, despite the absence of historical, economical, or cultural components, likely 

relates to the importance of spatial scale and spatial flexibility in explaining biogeographical 

patterns (Schneider, 2001; McGill, 2010).  
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We analysed the relationship between climate and human density over large spatial scales, 

which reduces the importance of more localized determinants of population density such as 

proximity to waterways, trade routes, geological features, and areas of industrial and 

agricultural development. The spatial scale of our models cannot describe highly localized 

and drastic variations in human density (e.g., Nile and Ganges valleys, large cities); as a 

result urban areas and other localized forms of population aggregation are largely 

contributing to unexplained variation in our models. These factors are clearly important 

determinants of smaller scale patterns in human density distribution and likely account for 

why significant amounts of variation remain unexplained by our models. The residuals of our 

climate-density model (Fig. 4.2) clearly illustrate localized regions where population density 

is higher or lower than expected based on climate variables. This map may be of interest to 

researchers interested in moving beyond simple climate-based explanations of human density 

distribution to explore the multitude of historical, cultural, economic, and geographic 

determinants of density distribution. Vulnerability to climate change will also be heavily 

influenced by fine scale patterns in the distribution of human population density, including 

urbanization (McGranahan et al., 2007; Satterthwaite, 2009), distance from coastlines related 

to sea-level rise (Nicholls & Lowe, 2004 ), and access to freshwater (World Water 

Assessment Programme, 2009). But these issues are probably best investigated with targeted 

regional models rather than by attempting to modify global models to include all factors of 

potential regional importance. In any event, our global representations of climate 

vulnerability are based, and should be interpreted, at a broad regional scale similar to the 

scale at which climate conditions vary.  

 

Second, we used a spatially explicit modelling approach capable of analysing spatial non-

stationarities in human-climate relationships rather than treating these as noise in a global 

model. The capacity for geographically weighted regression to capture the geographical 

variability in the magnitude and direction of human-climate relationships significantly 

decreased the spatial auto-correlation of residual values while providing visual insights into 

the spatial pattern of the influence of climate conditions. The non-stationary nature of this 

regression technique is also important in modeling species with broad distribution, such as 

humans, because it does not rely on the assumption that there is no local adaptation. This 

often unrealistic assumption may also explain why stationary models of species with broad 

distribution are generally weaker than those of species with limited distribution (Newbold et 

al., 2009). 
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Causality in species-climate correlations 

One of the most fundamental criticisms of ecological niche modeling is that current species-

climate relationships may not persist in a changing climate because they are not direct, causal 

relationships. Although future projections are difficult to test, empirical support for climate-

based modelling of a variety or plant and animal taxa has been shown by predicting the non-

native ranges of invasive species based on the climatic niche of their native range (Peterson, 

2003; Thuiller et al., 2005; but see Broennimann et al., 2007; Fitzpatrick et al., 2007). 

Paleoclimate studies also reveal a surprising degree of coherence between species 

assemblages and prevailing climate conditions, even during periods of relatively rapid 

climate change (though unlikely to be as rapid as the anthropogenic warming occurring 

during this and the previous century) (McGlone, 1996; Araujo et al., 2008).  Finally, recent 

climate change has been shown to coherently drive a wide range of ecological phenomena, 

despite an importance of many non-climate determinants (Parmesan & Yohe, 2003). 

 

The validity of our climate vulnerability indices requires sufficient continuity in climate 

influences on human populations, that the climate vulnerability of human populations in a 

climate changed future will be related, in some way, to the current climatic correlates of 

human density. The high explanatory power of our models of current human populations may 

be driven by non-climate variables that are influenced by climate. If this were the case, our 

indices would only be meaningful if the climate relationships of these non-climate variables 

remained consistent in a changing climate. Localized socio-economical variables such as 

concentrated areas of resource exploitation, transportation, trade, or economic development 

are likely to contribute to unexplained variation in our models, rather than as globally 

coherent covariates of the density-climate relationship, given the relatively smooth changes in 

the regression coefficients of climate predictors (Fig. 4.3, 4.13, 4.15). Agricultural and large-

scale socio-economic variables are better candidates for globally important covariates of the 

climate-density relationship, because they have global relevance and are more likely to vary 

across large spatial scales in a pattern similar to climate variables.      

 

Food production has been central to the foundation and persistence of human societies 

(Diamond, 2004) and its strong association with climate conditions have lead to climate 

change models predicting substantial regional changes in food production (Thomas, 2006; 

Cline, 2007). Additionally, cropland and pastures now represent approximately 40% of the 

land surface (Foley et al., 2005) and may therefore strongly influence the geographical 
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distribution of human density. Our climate-based models of current agricultural density 

support the hypothesis of strong climate-agriculture relationships. On the other hand, our 

analysis indicates that the climatic correlates of human density are strongly overlapping with 

climatic correlates of agricultural output. Thus; at a global scale of analysis, agricultural 

density explains little additional variation in human density that is not already explained by 

climate. This overlap in explanatory power, knowledge that not all climate impacts on human 

populations operate via agriculture and the absence of gridded global agricultural forecasts 

have led us to focus on predictions of climate vulnerability derived from density-climate 

relationships for the time being. However, the past, current and presumably future 

distribution and well-being of human populations is likely to be as dependent on the 

availability of food resources as any other animal populations. As a result, more thorough 

examination of the interrelationships between climate, the production and distribution of food 

resources, and the density distribution and vulnerability of human populations clearly 

warrants deeper consideration. Climate conditions have recently been shown to better explain 

current land-use patterns than soil type in the old World and Australia (Beck & Seiber, 2010). 

Although Beck & Seiber (2010) did not model current human density with climate variables, 

their models of human density based on land-use variables performed relatively well (adj-R
2
 

= 34%). 

 

In many regions of the world, forms of socio-economical development and employment 

opportunities seemingly unrelated to either climate or agriculture may be primary 

contemporary drivers of human density distribution. The emergence of these density drivers 

may only partially erode current correlations between climate and density if development and 

employment tends to arise in localities with a long history of dense human occupation, which 

may have originally been predicated on climate or agricultural suitability. The emergence of 

major economic and employment opportunities in previously unoccupied, climatically 

unfavourable regions of the world would do much more to weaken current associations 

between climate and human population density. But to the extent that these remain localized 

concentrations of higher than expected density in vast regions of otherwise low density, they 

are unlikely to be important influences in global analyses of human density distribution. 

 

A more important and uncertain issue is how socioeconomic factors will interact with 

contemporary climatic correlates of population density and regional climate change to define 

the climate vulnerability of human populations. In this paper, we considered only one socio-



 

91 

 

economical factor, projected population growth rates derived from demographic forecasts, in 

our analyses. Inclusion of this socio-economic variable to create our CDVI index tended to 

reinforce and amplify the regional disparities predicted from our CVI index based on climate 

and density alone. That is, regions where climate conditions currently supporting high 

population density are expected to decline also tend to be characterized by higher than 

average population growth. Thus, comparison of CVI and CDVI maps reveals a similar 

global pattern but the magnitude of disparity tends to be higher after the inclusion of one 

socio-economical variable. But many more socio-economic variables can and should be 

considered. For example, recent research has examined the importance of climate conditions 

on national institutions (Sokoloff & Engerman, 2000; Acemoglu et al., 2001), associations 

between trade policy and economic development (Frankel & Romer, 1999), and relationships 

between national institutions, environmental endowments and economic development 

(Easterly & Levine, 2003). 

 

Instantaneous Response 

Climate change predictions based on ecological niche models are often criticized because 

they assume instantaneous species responses to new climate conditions (Pearson & Dawson, 

2003). For example, if climate change leads to the appearance of suitable climate conditions 

in a previously unoccupied location, species are assumed to be able to immediately occupy 

that locality. This assumption ignores potential limits to dispersal and the difficulty of 

establishing in sites that may lack key resources or habitats (because they may be lagged in 

their response or also be limited by non-climatic factors). Because our analysis focuses on 

human population density within already occupied areas, we circumvent the necessity of 

some of these assumptions. Nevertheless, our calculation of climate consistent population 

growth involves a similar implicit logic that, as climate changes, so too will the potential for 

human population growth. However, in recognition of the many diverse drivers of human 

population growth and responses to climate change, we do not proceed to the step of using 

our climate modelling to predict the redistribution of human population density in a climate 

changed future. Instead, we limit our analysis to the calculation of potential climate 

consistent population growth as a basis to predict regions of relatively high and low 

vulnerability to climate change. Although our approach could be extended to predict climate 

change induced migration patterns (Myers, 2002; McLeman & Smit,2006), we caution about 

the need to differentiate potential from realized responses to climate change and the need to 

match the spatial scale of analyses to the spatial scale of interpretation.  
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4.6 Conclusions 

The strength of current associations between human population density and climate 

conditions and the robustness of the climate vulnerability predictions they generate offer a 

critically needed framework for predicting regional disparities in the potential impacts of 

climate change on human populations. Regional vulnerability assessments have been largely 

focused on the influence of GCM forecasts on adaptive capacities (IPCC, 2007; World Water 

Assessment Programme, 2009) but there is little doubt that treating exposure as simply the 

magnitude of change in one or a suite of climate variables is inadequate (Hockley et al., 

2009). Climate exposure should rather incorporate regional relationships between populations 

and climate, the direction and magnitude of regional climate change, as well as current and 

predicted demographic trends (McGranahan et al., 2007; Meyerson et al., 2007; Pope & 

Terrell, 2008). Additional insight into the human consequences of climate change can be 

achieved by expanding the framework described here to consider additional climate change 

effects, such as sea level rise (Overpeck et al., 2006; Yin et al., 2009) and extreme weather 

events (Hockley et al., 2009) as well as measures of adaptive capacities in areas such as 

resource management systems or development initiatives (Smit & Wandel, 2006). 

In summary, we believe that the capacity of our simple human ecological models to explain 

broad density distribution  patterns provide a coarse but important way to formulate initial 

predictions of the impacts of climate change on human societies. These initial predictions can 

be used as a null model (Gotelli, 2001) to highlight the regional importance of historical, 

economical, or social correlates of human density and climate change vulnerability. 
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Figure 4.1. Conceptual framework of a spatially-explicit approach for predicting the impacts of 

climate change on human populations. Rectangles represent data or indices calculated by the 

equations above each rectangle (see Methods). The climate vulnerability index (CVI) is 

estimated by combining climate change forecasts with contemporary relationships between 

human density and climate. We further refined the CVI by contrasting predicted vulnerabilities 

with demographic growth rates to create a climate-demography vulnerability index (CDVI) 

reflecting the spatial disparities between demographic trends and climate consistent population 

growth. This CDVI is then compared to per capita CO2 emissions on a nation-by-nation basis to 

test the hypothesis of a moral hazard in climate change mitigation policies. 
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Figure 4.2. Global variation in explanatory power (local adjusted R
2
) and residual values 

(observed density     predicted density) of a GWR model representing 1990 human densities 

based on four climate predictors (Fig. 4.3). The average (standard deviation) of local adj-R
2
 and 

residual values are, respectively 0.35 (0.17) and 0.11 (3.23). 
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Figure 4.3. Geographically weighted regression analysis of the contemporary relationship between human population density and four 

climate variables (R
2
 = 58%). Panels illustrate standardized regression coefficients (stdβ) for (A) annual mean temperature (

o
C), (B) 

mean temperature diurnal range (
o
C), (C) total annual precipitation (mm), and (D) precipitation seasonality (coefficient of variation). 

The average and range of stdβ for each variable are: (A) 0.29: -1.9 to 7.7, (B) -0.31: -2.5to 0.3, (C) 0.07: -1.7 to 1.3, (D) 0.04: -1.8 to 

5.6. The black lines at the bottom of panel (C) represent the longitudinal breaks in the global dataset and apply to all four panels (see 

Methods). 



 

103 

 

 

Figure 4.4. Climate vulnerabilities index (CVI) expressed as climate consistent annual growth rate (λc ; see equation 4) based on 

contemporary human density-climate relationships (Fig. 4.3) and a 2050 climate forecast (Fig. 4.9). Climate consistent annual growth 

rates less than one, indicated in red, represent negative growth and high vulnerabilities while changes in annual growth rates greater 

than one, indicated in blue, represent positive growth and low vulnerabilities. White regions correspond to zero human density values 

in the global gridded population database. 
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Figure 4.5. Global climate-demography vulnerability index (CDVI) estimated by subtracting CVI (Fig. 4.4) from demographic annual 

growth rates (Fig. 4.11), expressed as human density annual growth rates (see equation 5). Highly negative values, indicated in blue, 

represent low vulnerability situations where current demographic growth is much lower than climate consistent population growth, 

while highly positive values, indicated in red, represent high vulnerability situations where current demographic growth vastly exceeds 

climate consistent population growth. White regions correspond to zero human density values in the global gridded population 

database. 
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Figure 4.6. Relationship between per capita CO2 emissions (kT per person) and average CDVI 

among 120 nations (p <0.001). The per capita CO2 emissions are based on OECD/IEA 2006 

national CO2 emissions (OECD/IEA, 2008) and UNPD 2006 population size (UNPD, 2007) 

(Fig. 4.12). Excluded from this analysis are seventy-two nations, collectively representing less 

than 2.7% of the world population in 2006, with UN membership but without CO2 emission data.  
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4.11 Supplementary materials 

 

Table 4.1. Climate variables used to predict contemporary human densities and the number of 

models including each variable. The variable code is used to name models in table 4.2. 

 

Code Climate predictor # of models 

1  Annual Mean Temperature (
o
C) 20 

2  Mean Temperature Diurnal Range (
o
C)  5 

3  Isothermality (%) 5 

4  Temperature Seasonality (%) 6 

5  Max Temperature of Warmest Month (
o
C) 7 

6  Min Temperature of Coldest Month (
o
C) 7 

7  Temperature Annual Range  (
o
C) 5 

8  Mean Temperature of Wettest Quarter  (
o
C) 4 

9  Mean Temperature of Driest Quarter (
o
C) 4 

10  Mean Temperature of Warmest Quarter (
o
C) 4 

11  Mean Temperature of Coldest Quarter (
o
C) 4 

12  Total Annual Precipitation (mm) 17 

13  Precipitation of Wettest Month (mm) 6 

14  Precipitation of Driest Month (mm) 7 

15  Precipitation Seasonality (CV) 14 

16  Precipitation of Wettest Quarter (mm) 4 

17  Precipitation of Driest Quarter (mm) 4 

18  Precipitation of Warmest Quarter (mm) 4 

19  Precipitation of Coldest Quarter (mm) 4 
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Table 4.2. Explanatory power and regional significance of 33 GWR models of contemporary 

human densities based on current climate predictors. Adjusted coefficients of determination are 

calculated by averaging the adj-R
2
 of the four datasets independently analysed (see Methods). 

The regional significance index is an average for the four datasets of the proportion of localities 

where the pseudo t-values (Fotheringham et al., 2002) are larger than 2 for each climate 

predictor. Model descriptions are based on table 4.1. Selected models are in bold. 
 

Model Adj-R2 
Regional 

significance 

hd=f(1,3,7,10,11) 0.582 53% 

hd=f(1,2,4,5,6) 0.581 43% 

hd=f(1,2,12,18,19) 0.579 52% 

hd=f(1,2,12,15) 0.575 65% 

hd=f(1,2,4,7) 0.568 51% 

hd=f(1,5,6,12,15) 0.568 43% 

hd=f(1,5,6,13,14) 0.568 42% 

hd=f(1,5,6,16,17) 0.568 42% 

hd=f(1,10,11,12,15) 0.567 48% 

hd=f(4,7,10,11) 0.566 44% 

hd=f(1,3,12,16,17) 0.565 48% 

hd=f(1,4,12,16,17) 0.563 50% 

hd=f(1,5,6,13) 0.561 42% 

hd=f(1,7,12,15) 0.560 61% 

hd=f(5,6,13,14) 0.560 48% 

hd=f(1,8,9,12,15) 0.559 32% 

hd=f(1,5,12,15) 0.559 56% 

hd=f(1,3,13,14) 0.556 60% 

hd=f(1,8,9,12,18,19) 0.555 30% 

hd=f(10,11,12,15) 0.554 54% 

hd=f(1,5,6,14) 0.553 42% 

hd=f(1,3,18,19) 0.545 56% 

hd=f(8,9,12,15) 0.542 59% 

hd=f(1,5,6) 0.542 43% 

hd=f(2,4,7,15) 0.529 51% 

hd=f(1,12) 0.527 71% 

hd=f(8,9,18,19) 0.522 60% 

hd=f(12,13,14,15) 0.496 48% 

hd=f(12,15,16,17) 0.495 49% 

hd=f(13,14,15) 0.480 51% 

hd=f(12,13,14) 0.480 51% 

hd=f(12,15) 0.474 66% 
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Figure 4.7 Global distribution of human density, expressed as persons per km
2
, in 1990 at a resolution of 1

o
 (CIESIN, 2005).
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Figure 4.8. Explanatory power and average regional significance of two current climate models 

of 1990 human densities as a function of GWR bandwidth (model 1: hd=f(1,2,12,15), model 2: 

hd=f(1,5,6,13), see table 4.1 and 4.2) for the Old World, displayed as average of the three 

datasets analysed. The New World required a bandwidth based on an adaptive kernel of fixed 

sample size rather than spatial threshold because of the Isthmus of Panama. The regional 

significance index is an average of the proportion of localities where the pseudo t-values 

(Fotheringham et al., 2002) are larger than 2 for each climate predictor. The dataset representing 

the western part of the Old World is not included in the 2500km bandwidth for both models due 

to high spatial colinearity in predictor values. Similarly, we limited our analyses to bandwidths 

greater than 2500km because of high spatial colinearity in predictor values at lower bandwidths. 
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Figure 4.9. Forecasted change between 1990 and 2050 in (A) annual mean temperature (
o
C), (B) mean temperature diurnal range (

o
C), 

(C) total annual precipitation (mm), and (D) precipitation seasonality (coefficient of variation). Based on interpolated data from the 

CCCMA 2a2 general circulation model (Hijmans et al., 2005). 
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Figure 4.10. Forecasted change between 1990 and 2050 in (A) annual mean temperature (
o
C), (B) maximum temperature of the 

warmest month (
o
C), (C) precipitation of the wettest month (mm), and (D) minimum temperature of the coldest month (

o
C). Based on 

interpolated data from the CCCMA 2a2 general circulation model (Hijmans et al., 2005). 
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Figure 4.11. Human density annual growth rate between 1990 and 2015 (CIESIN, 2005). 
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Figure 4.12. National average per capita CO2 emissions based on OECD/IEA 2006 national CO2 emissions (OECD/IEA, 2008)  and 

UNPD 2006 national population size (UNPD, 2007). Seventy countries with UN membership but without CO2 emission data are 

excluded from this analysis (displayed in white), but represented less than 2.6% of the world population in 2006. 
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Figure 4.13. Standardized regression coefficients (stdβ) for (A) annual mean temperature (
o
C), (B) mean temperature diurnal range 

(
o
C), (C) total annual precipitation (mm), and (D) precipitation seasonality (coefficient of variation) from a GWR model representing 

1990 human densities based on four climate predictors (average 1950-2000) and agricultural extent circa 2000 (Ramankutty et al., 

2008; see figure 4.14). The colour ramp of the legend represents stdβ values between 1 and -1 to allow direct comparison between 

alternative models (Fig. 4.2, 4.16, 4.17). The average and range of stdβ for each variable are: (A) 0.21: -1.5 to 4.7, (B) -0.31: -2.5 to 

0.13, (C) 0.14: -1.38 to 1.17, (D) 0.05: -1.24 to 2.7. The black lines at the bottom of panel (C) represent the longitudinal breaks in the 

global dataset and apply to all four panels (see Methods). 
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Figure 4.14. Standardized regression coefficients (stdβ) for agricultural extent from a GWR model representing 1990 human densities 

based on four climate predictors (average 1950-2000) and agricultural extent circa 2000 (Ramankutty et al., 2008; see figure 4.13). 

The colour ramp of the legend represents stdβ values between 1 and -1 to allow direct comparison between alternative models (Fig. 

4.2, 4.13, 4.15). The average and range of stdβ are: 0.27: -0.41 to 1.8. The black lines at the bottom of panel represent the longitudinal 

breaks in the global dataset (see Methods). 
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Figure 4.15. Standardized regression coefficients (stdβ) for (A) annual mean temperature (

o
C), (B) minimum temperature of the 

coldest month (
o
C), (C) precipitation of the wettest month (mm), and (D) maximum temperature of the warmest month (

o
C) from a 

GWR model between 1990 human densities and four climate predictors (1950-2000 average). The colour ramp of the legend 

represents stdβ values between 1 and -1 to allow direct comparison between alternative models (Fig. 4.2, 4.13, 4.14).  The average and 

range of stdβ for each variable are: (A) -0.35: -19.3 to 8.1, (B) -0.01: -8.2 to 6.8, (C) 0.15: -1.2 to 1.3, (D) 0.71: -5.3 to 19.0. The black 

lines at the bottom of panel (C) represent the longitudinal breaks in the global dataset and apply to all four panels (see Methods). 



 

117 

 

 

 
Figure 4.16. Climate vulnerabilities index (CVI) expressed as climate consistent changes in human density annual growth rate based 

on a GWR model between 1990 human density and four climate predictors (Fig. 4.15) and a 2050 climate forecast (Fig 4.17). Climate 

consistent changes in annual growth rate less than one, indicated in red, represent high vulnerabilities while climate consistent changes 

in annual growth rates greater than one, indicated in blue, represent low vulnerabilities. White regions correspond to zero human 

density in the 1990 dataset. 
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Figure 4.17. Global climate-demography vulnerability index (CDVI) estimated by subtracting climate vulnerabilities (Fig. 4.16) from 

demographic annual growth rates (Fig. 4.11), displayed as percentage of human density annual growth rates. Values less than one, 

indicated in blue, represent low stress and values greater than one, indicated in red, represent high stress. White regions correspond to 

zero human density values in the 1990 dataset. 
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Figure 4.18. Climate vulnerabilities (CVI) expressed as climate consistent changes in annual growth rate based on two human-climate 

models (panels A, C, E represent model shown in Fig. 4.3, and panels B, D, F represent model shown in Fig. 4.15) and three general 

circulation models for 2050 under the A2 scenario (panel A-B: CSIRO, panel C-D: HADCM3, panel E-F: CCCMA). Human density 

annual growth rates less than one represent high vulnerabilities and conversely. White regions correspond to zero human density 

values in the 1990 dataset. 
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Figure 4.19. Global patterns of climate-demography vulnerability index (CDVI) for two human-climate regression models (panels A, 

C, E represent model shown in Fig. 4.3, and panels B, D, F represent model shown in Fig. 4.15) and three general circulation models 

for 2050 under the A2 scenario (panel A-B: CSIRO, panel C-D: HADCM3, panel E-F: CCCMA). Values are expressed as percentage 

of human density annual growth rates and positive values represent high vulnerability and conversely. White regions correspond to 

zero human density values in the 1990 dataset. Global average and standard deviation (in parenthesis) of CDVI for each model are: A) 

1.09 (2.23), B) 1.33 (2.08), C) 1.34 (2.43), D) 1.53 (2.38), E) 1.03 (2.19), F) 1.24 (2.19). 
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Linking statement 

 

The previous chapter demonstrated that geographically weighted regression (GWR) models 

based on a few climate variables were able to explain approximately half of the variation in 

human regional density across the globe. In the next chapter, I evaluate the idiosyncratic nature 

of GWR models of human regional density by using historical data. More specifically, I evaluate 

the temporal stability of GWR models of human regional density in the contiguous United States 

during the 20
th
 century. I also assess the importance of socio-economical in the patterns of 

regional human density over the last century. 
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CHAPTER 5 : United States climate change driven by persistent 

climate-correlated demographics 
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5.1 Introductory paragraph 

 

One would expect that as human society has been transformed by technology, demographic 

patterns would become increasingly decoupled from climate and more dependent on 

socioeconomic conditions. Here we use spatially-explicit models to evaluate climatic and socio-

economic correlates of demographic change in the contiguous United States during the 20
th
 

century. Contrary to predictions, population growth was more strongly correlated with climate 

than socio-economic variables in all time periods and the strength of these climate-demographic 

correlations is increasing rather than decreasing. Climate-correlated variation in population 

growth has caused the U.S. population to shift its realized climate niche from cool, seasonal 

climates to warm, aseasonal climates. As a result, the average annual temperature experienced by 

U.S. citizens between 1920 and 2000 has increased by more than 1.5
o
C and the temperature 

seasonality has decreased by 1.1
o
C during a century when climate change accounted for only a 

0.24
o
C increase in average annual temperature and a 0.15

o
C decrease in temperature seasonality. 

Thus, despite advancing technology, climate-correlated demographics continue to be a major 

feature of contemporary U.S. society. Unfortunately, these demographic patterns are contributing 

to a substantial warming of the climate niche during a period of rapid environmental warming, 

making an already bad situation worse. 

 

5.2 Main text 

 

The changing relationship between human populations and climate is of major interest given 

persistent population growth, accelerating climate change, and increasingly complex and 

diversified influences of climate on human well-being. While historical climate change is known 

to have had profound impacts on human populations
1-5

, the impact of contemporary climate 

change on our societies is likely to be more complex and regionalized because of the diversity of 

technological, economic and social conditions influencing the human-climate relationship
6-8

. The 

complexity of human societies and the rapidity of their demographic and technological 

transitions make it likely that relationships between human populations and climate have and 

will continue to change over time. In particular, various forms of technological, economic and 

social development could mean that the density and population growth of contemporary human 
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populations is less related to climate and more related to socioeconomic variables than was 

historically and pre-historically the case.  

 

The contiguous United States during the last century represents an ideal place and time for 

evaluating changing relationships between human demography, climate and socio-economic 

variables. During the 20
th
 century, the total population size of the United States increased, in a 

highly spatially heterogeneous fashion, from 76 million in 1900 to 281 million in 2000
9
. The 

availability of county-based, decadal census data provides robust, spatially-detailed data on 

demographic trends. Historical climate conditions can be inferred with reasonable confidence 

and adequate spatial resolution from the instrumental weather record. Finally, the availability of 

additional socio-economic variables, obtained directly or derived from census data, allows 

examination of non-climate correlates of demographic patterns. Using interpolated climate data 

with county-based demographic and socio-economic trends during five time periods in the 20
th
 

century, we first test the hypothesis that spatial patterns of demographic change became less 

related to regional variation in climate and more related to socio-economic variables over time. 

We then quantify how a century of climate—and/or socio-economic—correlated demographic 

change has altered the relationship between human population density and climate. In particular, 

we assess whether the mean climate exposure of the contemporary U.S. population has become 

cooler or warmer, wetter or drier during the last century. 

 

The spatially heterogeneous nature of demographic changes, socio-economic variables and 

environmental variables in the contiguous United States requires a statistical framework capable 

of modelling regional differences in estimated relationships. Systems with such regional 

disparities have been defined as non-stationary
10

 and statistical models have been developed to 

describe this spatial non-stationarity. Here we use geographically weighted regression (GWR), a 

non-stationary technique
11

, to examine spatial relationships between county-based demographic 

change and four climate variables and four socio-economic variables across five twenty-year 

periods within the 20
th
 century. We predicted that correlations between climatic variables and 

demographic growth rates would be generally weak and temporally declining across United 

States given the expanding influence of technology, economy and society on 20
th
 century 

demographic trends. The four climate variables examined describe the average and seasonality of 
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both temperature and precipitation. The four socio-economic variables, used as a point of 

comparison to climate variables, were selected to reflect the potential importance of initial 

population size, access to major waterways and ship-based trade, food production, and economic 

prosperity.  

 

Contrary to predictions, there was strong evidence of persistent climate-correlated demographic 

trends in the U.S. throughout the 20
th
 century. The relative importance of climate variables as 

predictors of population growth rate strongly increased from 1900 to 1960, then remained 

important from 1961 to 2000 (Fig. 5.1). Early in the century, population growth was most 

pronounced in the western half of the U.S. (Fig. 5.2) and positively correlated with warm regions 

of low human density and high income (Fig. 5.3). A positive, but weakening association between 

population growth and annual average temperature persisted in warmer portions of the west for 

the remainder the 20
th
 century. However, the negative relationship between population density 

and growth prevailing in the west early in the century shifted in the latter half of the century to a 

strongly positive association between density and growth, spanning the entire U.S. but 

particularly strong in the south. Thus, areas that were already densely populated grew more than 

areas that were less densely populated, which tended to maintain and amplify the initial 

importance of climate as a correlate of growth.  

 

The mean climate experienced by the U.S. population during the same five temporal horizons 

can be estimated by combining county-based population estimates and county-interpolated 

climate data. This analysis generates a climate niche surface reflecting the number of people 

experiencing a given combination of climate conditions, which is prone to change over time as 

the climate changes and the number of people living in different climatic regions changes. We 

predicted that the climate niche of the U.S. population has become warmer as a result of climate 

change and population growth in southern regions.  

 

The climate niche of the contiguous U.S. population has changed dramatically during the 20
th
 

century as a result of climate-correlated and regionalized demographic trends. Plotting 

population abundance in climate space, defined by average annual temperature and temperature 

seasonality, reveals a two-peak climate niche throughout the 20th century, with a cool, seasonal 
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peak corresponding to climate conditions typical of the Middle Atlantic region and a warm, 

aseasonal peak corresponding to a southern belt extending from Florida to California (Fig. 5.4). 

Throughout most of the 20
th
 century, both peaks were relatively stationary in climate space and, 

concomitant with nationwide population growth, increased in abundance. However, the warm, 

aseasonal population peak increased in abundance much more than the cold, seasonal peak 

(Supplementary Fig. 5.6), particularly between 1980 and 2000 when its location also shifted to 

the extreme warm and aseasonal edge of U.S. climate space. As a result, the average temperature 

experienced by U.S. citizens has increased by more than 1.5
o
C between 1920 and 2000, when 

climate change accounted for only a 0.24
o
C increase (Fig. 5.5). Meanwhile, the temperature 

seasonality experienced by U.S. citizens decreased by 1.1
o
C between 1920 and 2000 during a 

time period when temperature seasonality only decreased by 0.15
o
C.  

 

A strong knowledge of historical patterns is essential to comprehend the current state of a system 

and to anticipate how this system may change in the future
12

. Previous studies have shown the 

relatively high predictive power of both climate models of agricultural density
13

 and agricultural 

models of human density
14

. We found that demographic changes in the United States during the 

20
th
 century were consistently correlated with climatic conditions and increasingly uncorrelated 

with socio-economic conditions other than human density. As a result, populations grew most 

rapidly in the warmest, least seasonal and most densely populated regions of the United States. 

These warm and non-seasonal regions are also relatively dry (Fig.5.2), causing the U.S. 

population to also shift its realized climate niche towards drier conditions (Supplementary Fig. 

5.7 and 5.8), Collectively, these results provide a robust historical framework to better evaluate 

the potential consequences of anticipated climate change, demographic growth, and water stress 

on human populations in the United States
15,16

 and reinforce the importance of forecasted 

demographic changes in our assessements and mitigation of human vulnerability to climate 

change
17

. 

 

Readers may reasonably question whether we assume causation underlies the correlations 

between climate and demography that we identify here. Do we mean to suggest that climate is a 

direct determinant of population growth; such that, like potted plants, human populations grow in 

response to warmth and water? Or do we mean to suggest that population growth occurs in 
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particular times and places for reasons that have nothing to do with prevailing environmental 

conditions, such that climate correlations persist only as artefacts or coincidence? The first and 

most rigorous answer is that we do not know, because we have not conducted the research 

necessary to resolve why the U.S. population has grown when and where it did and we are not 

aware of a body of research that compares the relative influence of environmental and societal 

contributors to population growth in historical and contemporary societies (but see
18

). The 

second and least rigorous answer is that, in the absence of direct evidence, we speculate these 

correlations reflect neither direct causality nor complete coincidence. Our speculation is pushed 

to the broad middle ground between these endpoint extremes by, on one hand, the many social, 

economic and historical factors known to shape where humans live, how well they survive, and 

how much they reproduce
19,20

. On the other hand, recognition of the fundamental influence of 

climate on our thermal comfort, food supply, lifestyle, infrastructure, and environmental hazards
8
 

makes us hesitant to dismiss climate as a merely coincidental condition in human affairs. The 

third and most pertinent answer is that resolving the basis of these correlations is, for present 

purposes, less important than documenting their strength and persistence. Regardless of why 

population growth is correlated with climate in the contiguous U.S., the strength and persistence 

of this correlation throughout the last century, in a region and a time with great potential for 

departure from the climate constraints and dependencies that have affected human populations in 

the past
2-4,21-23

, suggests climate-correlated demography will continue to be an important 

contributor to climate exposure in the future.  

 

The strong shift in the thermal niche of human populations in the contiguous United States 

during the 20
th
 century has greatly increased the warm climate exposure experienced by 

American citizens. While average annual temperature has increased during the 20
th
 century by 

0.65
o
C across the globe

24
, and by 0.24

o
C across the United States, spatially heterogeneous 

demographic growth has caused the climate experienced by U.S. residents to increase by 1.5
o
C. 

The annual cost of an increase of 1.5
o
C in average temperature has been estimated at 1.44 billion 

dollars in a 1990 economy and 4.39 billion dollars in a 2060 economy
25

. By distributing the 

expected cost across five thermal zones of the contiguous United States, it is estimated that more 

than 80% of the cost originates from the two warmest zones
25

, consistent with cooling being 

more expensive than heating. However, these predictions of future costs and their regional 
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origins, are based on the assumption of geographically homogenous population increase across 

the United States between 1990 and 2060
25

, which is unlikely given the 20
th
 century 

demographic patterns quantified here. Given that the change in climate exposure observed in this 

study is in the same direction than the anticipated climate change caused by greenhouse gas 

emissions
24

, it is likely that the economic burden of climate change during this century will be 

much greater and regionally disparate than predicted. Climate change predictions should thus 

explicitly incorporate regional demographic disparities
17

 to adequately anticipate the potential 

impacts of climate change on human well-being. Further, mitigation strategies might reasonably 

focus on both atmospheric and demographic contributions to experienced climate change.

5.3 Methods 

 

Human population data 

We estimated the population density for each county in the contiguous U.S. by dividing its total 

population size by its area based on U.S. censuses
9
. Although the first U.S. census was done in 

1790, we contrasted demographic patterns on a 20-year basis during the 20
th
 century because 

comprehensive climate data were not available prior to 1900. Between 1900 and 2000, the 

number of U.S. counties increased from 3063 to 3141 and the geographical boundaries of some 

counties shifted. Given the difficulty in comparing population figures between censuses when 

county boundaries are shifting
26

, we restricted our analyses to the 2728 counties that kept the 

same geographical boundaries and that had census data available throughout the last century. 

Such partial sampling of U.S. censuses during the 20
th
 century has been shown to adequately 

represent the demographic patterns of the whole country
27

. Given our interest in the demographic 

response to spatially and temporally variable climatic and socio-economic conditions, we used 

human density annual growth rate instead of absolute population size growth in our analysis. We 

calculated human density annual growth rate, herein referred as demographic growth rate, for 

each county during each 20-year interval with the following equation: 

  Equation 1 

 

Where λ represents demographic growth rate, hd represents human density and t0 and t1 represent 

the first and last year of the interval (e.g. 1900 and 1920), respectively. 
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Climate 

We used 1901-2000 gridded monthly time series of temperature and precipitation data (available 

at http://climate.geog.udel.edu/~climate/html_pages/archive.html) to calculate four climatic 

variables representing the average and seasonality of climate conditions across the United States 

in the last century (average annual temperature (
o
C), total annual precipitation (mm), standard 

deviation of monthly average temperature (
o
C), and standard deviation of monthly total 

precipitation (mm)). For each climatic variable, we averaged annual estimates over the 20 years 

of each temporal horizon. We then interpolated these climate variables using an inverse distance 

weighting technique and extracted climate conditions at the centroid of each county. 

 

Agricultural density 

We combined the crop and pasture density at the beginning of each temporal horizon to represent 

the influence of agriculture on demographic growth rates. Historical crop and pasture extent were 

obtained from the ISLSCP II Historical Land Cover and Land Use (1700-1990) dataset28 at a 1o 

resolution of latitude and longitude. We arc-sine square root transformed agricultural density to 

normalize its distribution. 

 

Distance from sea 

Distance from sea represent the accessibility to economically important maritime routes and was 

estimated as the shortest distance between the centroid of each county and the Atlantic Ocean, 

Pacific Ocean, or the Great Lakes and St-Lawrence River system. We square root transformed 

distance from sea to normalize its distribution. 

 

Human density 

We used human density in each county at the beginning of each temporal horizon to represent 

the influence of initial population density on demographic growth rates. As many counties had 

low densities and few had very high densities throughout the century, we log10 transformed the 

variable human density to normalize its distribution. 

 

Income 
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A comprehensive and unbiased measure of income was difficult to obtain because the economic 

queries in the U.S. censuses of the twentieth century were not consistent. The most 

comprehensive data available in each census were wages in the manufacturing sector for 1900 

and 1940, wages of wage earners for 1920, and categorical personal income for 1980. No 

comprehensive economic data was available for 1960. We standardized income estimates by 

calculating county‘s z-scores within census to preserve the geographical differences in income 

while allowing a direct comparison between censuses. We interpolated z-scores from 1940 and 

1970 censuses to obtain income estimates for 1960 with a weighted average where 1940 income 

estimates had a weight of 0.333 and 1970 income estimates had a weight of 0.667. A similar 

interpolation was done for 26% of the counties for the year 1940 because they did not have any 

income estimate. The 1980 census reported income as the number of persons represented by 

income range (e.g. 5000-7500$, 7500-10 000$, etc.) so we calculated average income for each 

county as the sum of the product of the number of persons in each category and the median 

income of that category. We refer to the county‘s z-score of income estimate during the first year 

of each temporal horizon as the variable income in all our analyses. 

 

Data analyses 

Geographically weighted regression model 

We used geographically weighted regression (GWR) to describe the spatial non-stationarity 

nature of the relationships between demographic growth rates and climatic and socio-economic 

variables. See Supplementary information for a description of GWR and an evaluation of the 

spatial non-stationarity in our analyses.  

 

Estimating the abundance peaks in climate space 

We smoothed the data using 2-dimensional LOESS regression with second order polynomials. A 

smoothing parameter of alpha=0.3 was used for Fig. 5.4 and Supplementary Fig. 5.7, but the 

results were qualitatively similar using different smoothing parameters. In Supplementary Fig. 

5.7, the few points with seasonality >100 mm were removed as they were too sparse in climate 

space to produce a meaningful interpolation. 
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Figure 5.1. Relative importance of climatic (grey) and socio-economic variables (white) in GWR 

models predicting demographic growth rates for 2728 U.S. counties during the 20
th
 century in 

five 20-year intervals. The relative importance of each variable is based on the proportion of 

counties where its standardized regression coefficient (stdβ) was highest in absolute value. 
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Figure 5.2. Spatial patterns of demographic growth rate, human density, income, agricultural 

density, distance from sea, and four climatic variables for 2728 U.S. counties during the 20
th
 

century. Counties shown in white were not included in the analyses because they did not have 

consistent census data or changed their geographical boundaries in the 20
th
 century. Temporal 

changes are shown based on five 20-year intervals for the first four variables whereas climatic 

variables and distance from the sea are only shown for the 1981-2000 interval because these 

variables remained very similar throughout the 20
th
 century (see Supplementary Fig. 5.9 for 

temporal changes in the spatial patterns of climate conditions). In order to directly compare the 

spatial patterns between variables, each panel represents county z-scores based on the average 

and standard deviation of that variable throughout the century. A z-score of 0 represent the mean, 

whereas a value of 1 represent one standard deviation above the mean.  The income z-scores are 

represented with a different scale based on quantiles to highlight geographical disparities because 

their distributions were skewed by a few counties with very high income z-scores (see Methods 

for details). 
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Figure 5.3. Standardized regression coefficients (Stdβ) of the four most important predictors of 

demographic growth rates for 2728 U.S. counties in five 20-year intervals during the 20
th
 

century. Counties shown in white were not included in the analyses because they did not have 

consistent census data or changed their geographical boundaries during the 20
th
 century. See 

Supplementary Fig. 5.10 for the Stdβ of the four other variables used in this analysis. 
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Figure 5.4. Variation in human abundance across the thermal niche of U.S. populations based on 2728 U.S. counties throughout the 

20
th
 century. The climate niche is based on average annual temperature (

o
C) and temperature seasonality (

o
C). Human abundance data 

are from the population census of the year displayed on each panel and the colour ramp is log10 scaled. We estimated the climate 

conditions of each temporal horizon by averaging annual climate conditions of the preceding 20 years and, given the lack of climate 

data prior to 1900, we used the 1901-1920 climate averages in our analyses of both 1900 and 1920. See Supplementary Fig. 5.7 for a 

similar analysis based on precipitation. 
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Figure 5.5. Changes in climate conditions in the contiguous United States during the 20
th
 century 

averaged across 2728 counties (Climate change) and averaged across U.S. citizens (Climate 

exposure). The x-axis represents average annual temperature (
o
C) and the y-axis temperature 

seasonality (
o
C). The arrows beside the axes represent the change in climate conditions between 

1920 and 2000 for both time series. We estimated the climate conditions of each temporal 

horizon by averaging annual climate conditions of the preceding 20 years and, given the lack of 

climate data prior to 1900, we used the 1901-1920 climate averages in our analyses of both 1900 

and 1920. The Climate change result for 1900 is therefore omitted while the Climate exposure 

results in 1900 and 1920 are based on the same climate conditions but different population sizes. 

See Supplementary Fig. 5.8 for a similar analysis based on precipitation.   
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5.7 Supplementary material 

 

Geographically weighted regression model 

 

Although similar to standard regression models, GWR allows spatial flexibility in regression 

coefficients by providing a unique regression model for each location based on a geographical 

weighting function. Take, for example, a model predicting demographic growth rates (λ) based 

on four variables (V1, V2, V3, V4). Demographic growth rates are then predicted by the following 

spatially-explicit regression model: 

 

equation S1 

 

 

Local regression coefficients are estimated as: 

equation S2 

 

where X represents the matrix of predictors and W represents the matrix of geographical weights 

for each of the observed data used at a given location. We used a bi-square geographical 

weighting function as shown in equation 4:  

 

equation S3 

 

 

where w represents the weight of observed datum, d is the distance between the observed datum 

and the area where local regression parameters are estimated, and b is a threshold distance 

referred to as the bandwidth. The bandwidth is limited to a minimum value by high spatial 

colinearity in predictor values while very large bandwidths cannot describe non-stationary 

patterns. As an absolute bandwidth can create biases in coastal areas given the smaller sample 

size used to estimate their regression coefficients, we used an adaptive kernel bandwidth where 

the weights are geographically adjusted to represent 30% of the neighbouring counties. This 

adaptive bandwidth represented, on average, 9.7
o
 of latitude and longitude. The high spatial 

colinearity between some variables required us to increase the bandwidth of three models 
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(GWRSE for 1901-1920 and 1921-1940: 50% bandwidth, GWRSE for 1941-1960: 45% 

bandwidth). All GWR analyses were done with the software SAM
1
. 

 

Spatial non-stationarity evaluation 

We assessed the spatial stationarity of our demographic change models by comparing the 

predictive power of GWR models (non-stationary) with ordinary least square (OLS) regression 

models (stationary). In order to detect potential spurious correlations between climatic and socio-

economic variable, we contrasted the spatial patterns of variable influences between models with 

climatic variables (GWRC, OLSC), socio-economic variables (GWRSE, OLSSE), or both 

(GWRC+SE, OLSC+SE). We used Akaike Information Criterion adjusted for small sample size 

(AICc)
2
 to evaluate the fit of each model (Table 5.1). The figures in this paper are all based on 

the GWRC+SE models. See the results from the GWRSE models in Supplementary Fig. 5.11 and 

from the GWRC models in Supplementary Fig. 5.12.
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Table 5.1. Model selection with Akaike information criterion (AIC) of stationary (OLS) and non-stationary (GWR) regression models 

predicting demographic growth rates for 2728 U.S. counties in the 20
th
 century based on climatic (C) and/or socioeconomic (SE) 

predictors. The AICc weigths of the GWRC+SE models were always one across all temporal horizons. The non-stationary nature of 

GWR was taken into account by adjusting the number of effective parameters (ranges of effective parameters across temporal 

horizons: GWRC+SE = 63.3-65.2; GWRC = 33.1-33.8; GWRSE = 22.9-39.8). 

Predictive model 1901-1920 1921-1940 1941-1960 1961-1980 1981-2000 

 

Adj-
R2 AICc 

ΔAIC
c 

Adj-
R2 AICc 

ΔAIC
c 

Adj-
R2 AICc 

ΔAIC
c 

Adj-
R2 AICc 

ΔAIC
c 

Adj-
R2 AICc 

ΔAIC
c 

GWRC+SE 0.57 
-

14067 0 0.49 
-

15767 0 0.55 
-

17038 0 0.61 
-

18581 0 0.66 
-

19629 0 

GWRC 0.38 
-

13081 986 0.39 
-

15316 451 0.38 
-

16199 838 0.37 
-

17271 1309 0.37 
-

17992 1636 

GWRSE 0.49 
-

13674 393 0.34 
-

15148 619 0.33 
-

16003 1035 0.48 
-

17724 856 0.54 
-

18829 799 

OLSC+SE 0.37 
-

13075 992 0.21 
-

14661 1106 0.27 
-

15801 1237 0.39 
-

17407 1173 0.45 
-

18403 1225 

OLSC 0.17 
-

12346 1720 0.19 
-

14580 1188 0.15 
-

15420 1617 0.18 
-

16618 1963 0.20 
-

17393 2236 

OLSSE 0.35 
-

13020 1047 0.12 
-

14373 1394 0.06 
-

15132 1906 0.07 
-

16316 2265 0.13 
-

17180 2448 
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Figure 5.6. Population abundance in the cold seasonal and the warm aseasonal population peaks 

(see Fig. 5.4) of the US thermal niche during the 20
th
 century.
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Figure 5.7. Variation in human abundance across the precipitation niche of U.S. populations 

based on 2728 U.S. counties throughout the 20
th
 century. The climate niche is based on total 

annual precipitation (mm) and precipitation seasonality (mm). Human abundance data are from 

the population census of the year displayed on each panel. We estimated the climate conditions 

of each temporal horizon by averaging annual climate conditions of the preceding 20 years and, 

given the lack of climate data prior to 1900, we used the 1901-1920 climate averages in our 

analyses of both 1900 and 1920.
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Figure 5.8. Changes in climate conditions in the contiguous United States during the 20
th
 century 

averaged across 2728 counties (Climate change) and averaged across U.S. citizens (Climate 

exposure). The x-axis represents total annual precipitation (mm) and the y-axis precipitation 

seasonality (mm). The arrows beside the axes represent the change in climate conditions between 

1920 and 2000 for both time series. We estimated the climate conditions of each temporal 

horizon by averaging annual climate conditions of the preceding 20 years and, given the lack of 

climate data prior to 1900, we used the 1901-1920 climate averages in our analyses of both 1900 

and 1920. The Climate change result for 1900 is therefore omitted while the Climate exposure 

results in 1900 and 1920 are based on the same climate conditions but different population sizes. 

See Methods for details. 
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Figure 5.9. Spatial patterns of four climate variables for 2728 U.S. counties in five 20-year 

intervals during the 20
th
 century. Counties shown in white were not included in the analyses 

because they did not have consistent census data or changed their geographical boundaries in the 

20
th
 century. In order to directly compare the spatial patterns between variables, each panel 

represents county z-scores based on the average and standard deviation of that variable 

throughout the century. A z-score of 0 represent the mean, whereas a value of 1 represent one 

standard deviation above the mean.
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Figure 5.10. Standardized regression coefficients (Stdβ) of the four least important predictors of 

demographic growth rates for 2728 U.S. counties in five 20-year intervals during the 20
th
 

century. Counties shown in white were not included in the analyses because they did not have 

consistent census data or changed their geographical boundaries during the 20
th
 century. See fig. 

5.3 for the Stdβ of the four other variables used in this analysis. 
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Figure 5.11. Standardized regression coefficients of socio-economical variables for 2728 U.S. 

counties during the 20
th
 century estimated with GWRSE models predicting demographic growth 

rates. White counties were not included in the analyses because they did not have consistent 

census data or changed their geographical boundaries in the 20
th
 century.
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Figure 5.12. Standardized regression coefficients of climatic variables for 2728 U.S. counties 

during the 20
th
 century estimated with GWRC models predicting demographic growth rates. 

White counties were not included in the analyses because they did not have consistent census 

data or changed their geographical boundaries in the 20
th

 century. 
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Chapter 6 Summary and final conclusions 

 

In this thesis, I compared the uncertainties arising from the choice of predictors (i.e. niche 

dimensions) with the uncertainties arising from the choice of niche and climate models in 

ecological forecasts of beaver regional density. I then evaluated the importance of predictors 

describing the niche dimensions of beaver using geographically weighted regression (GWR) 

models of beaver regional density. I also created ecological forecasts of human regional density 

across the world and combined these ecological forecasts with a demographic forecast to provide 

the first global, quantitative index of human vulnerability to climate change. I finally combined 

historical human regional density, climate, and socio-economical data in the contiguous United 

States during the 20
th
 century to assess the temporal stability in human climate relationships. 

 

6.1 Predictor importance in ecological niche models 

 

The major importance of climate predictors in ecological niche models that is found in the 

majority of ecological niche models (Whittaker, 1975; Caughley et al., 1987; Stenseth et al., 

2002; Pearson & Dawson, 2003; Araújo & Luoto, 2007) has been observed in my analyses of 

both beaver regional density (chapter 3) and human regional density (chapter 4 and 5). However, 

the influence of some non-climate predictors was non-trivial. For example, regional beaver 

density was influenced by topography and forest cover (chapter 3), whereas human regional 

density was influenced by agriculture (chapter 4) and by human density and income (chapter 5). 

My results therefore suggest that climate based ecological forecasts under climate change are 

likely very useful in conservation planning but that a proper evaluation of non-climate predictors 

is necessary to advance the field of ecological forecasting under climate change. 
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6.2 Spatial non-stationarity in ecological niche models 

 

Despite the general understanding in ecology that the determinants of regional density may vary 

across a species‘ distribution (Barnes, 1958; Brown, 1995; Elmes et al., 1999; Gross & Price, 

2000), most ecological forecasts under climate change do not explicitly test this spatial 

variability. The use of GWR models of regional density data allows us to test the concept of 

spatial non-stationarity because it provides standardized regression coefficients representing the 

local influence of the predictors used in ecological niche models. The spatial variability in the 

influence of ecological predictors of beaver regional density clearly demonstrates that the 

ecological determinants of beaver regional density are spatially changing both in direction and 

magnitude (chapter 3). Similarly, the influence of climate conditions on human regional density 

across the world is highly variable both in direction and magnitude (chapter 4). This may explain 

why a previous study of human regional density patterns (Small & Cohen, 2004) did not find that 

the inclusion of climate conditions significantly improved the explanatory power of their 

stationary models of regional human density. Furthermore, the clear spatial non-stationarity in 

the influence of four climate and four socio-economical predictors of demographic changes in 

the contiguous United States during the 20
th
 century (chapter 5) provides further evidence that 

human regional density is influenced by various environmental factors in a spatially 

heterogeneous fashion. 

 

6.3 Temporal stationarity in ecological forecasts under climate change 

 

The central assumption underlying all ecological forecasts under climate change is that current 

species-climate relationships will reflect future species-climate relationships (Pearson & 

Dawson, 2003). While this assumption is very difficult to test given the limited number of 

species with accurate data on both their regional densities and the potential ecological 

determinants of their regional density, the results in chapter 5 suggest that ecological forecasts 

can be useful in the field of climate change adaptation. Our results have shown that over five 20-

year intervals during the 20
th
 century, the influence of climate conditions has been relatively 

stable and that the minor spatial changes observed occurred gradually throughout the century. 

Given the complexity of human regional densities in the contiguous United States during the 20
th
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century, our results provide a convincing case study of temporal stationary in ecological niche 

models that support such assumption in ecological forecasts under climate change for other 

species. 
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