



# LES MALADIES CARDIAQUES

Souleymane Bah (étudiant) et Yacine Yaddaden (Professeur)

Département de mathématiques, informatique et génie, Université du Québec à Rimouski



## Problématique

Dans le domaine médical, les patients atteints de maladies cardiaques sont confrontés à une variété de symptômes et de situations, ce qui rend souvent difficile leur classification dans des catégories de diagnostic précises.

- Optimisation des méthodes de diagnostic assistées par ordinateur.
- Intégration efficace d'algorithmes de détection des maladies cardiaques
- —Assistance à la classification rapide des patients.
- Développement de recommandations de traitements personnalisés.

## Objectifs

L'objectif principal du projet est de développer une application de diagnostic médical automatisé visant à simplifier le processus de diagnostic des maladies cardiaques pour les professionnels de la santé.

- Gérer les données médicales.
- Entraîner l'arbre de décision pour le diagnostic.
- Évaluer ses performances.
- —Utiliser l'arbre de décision pour un diagnostic rapide et précis.
- —Améliorer les soins aux patients.

## Méthodologie suivie

La Figure 1 résume les différentes étapes du système proposé.

#### 1. Prétraitement des données

Nettoyage, transformation et mise en forme des données brutes.

#### 2. Chargement CSV [1] [3]

Ajout d'une fonctionnalité pour importer un fichier CSV d'entraînement.

## 3. Entraînement modèle

Utilisation des données pour former un modèle d'arbre de décision.

#### 4. Performances du modèle

Présentation des performances du modèle à l'utilisateur, comme le taux de reconnaissance et la matrice de confusion.

#### 5. Interface utilisateur

Ajout d'une fonctionnalité permettant à l'utilisateur de fournir les informations nécessaires pour une prédiction.

## 6. Prédiction [2]

Réalisation de la prédiction et affichage des résultats à l'utilisateur avec une interface intuitive basée sur Windows Presentation Foundation (WPF).

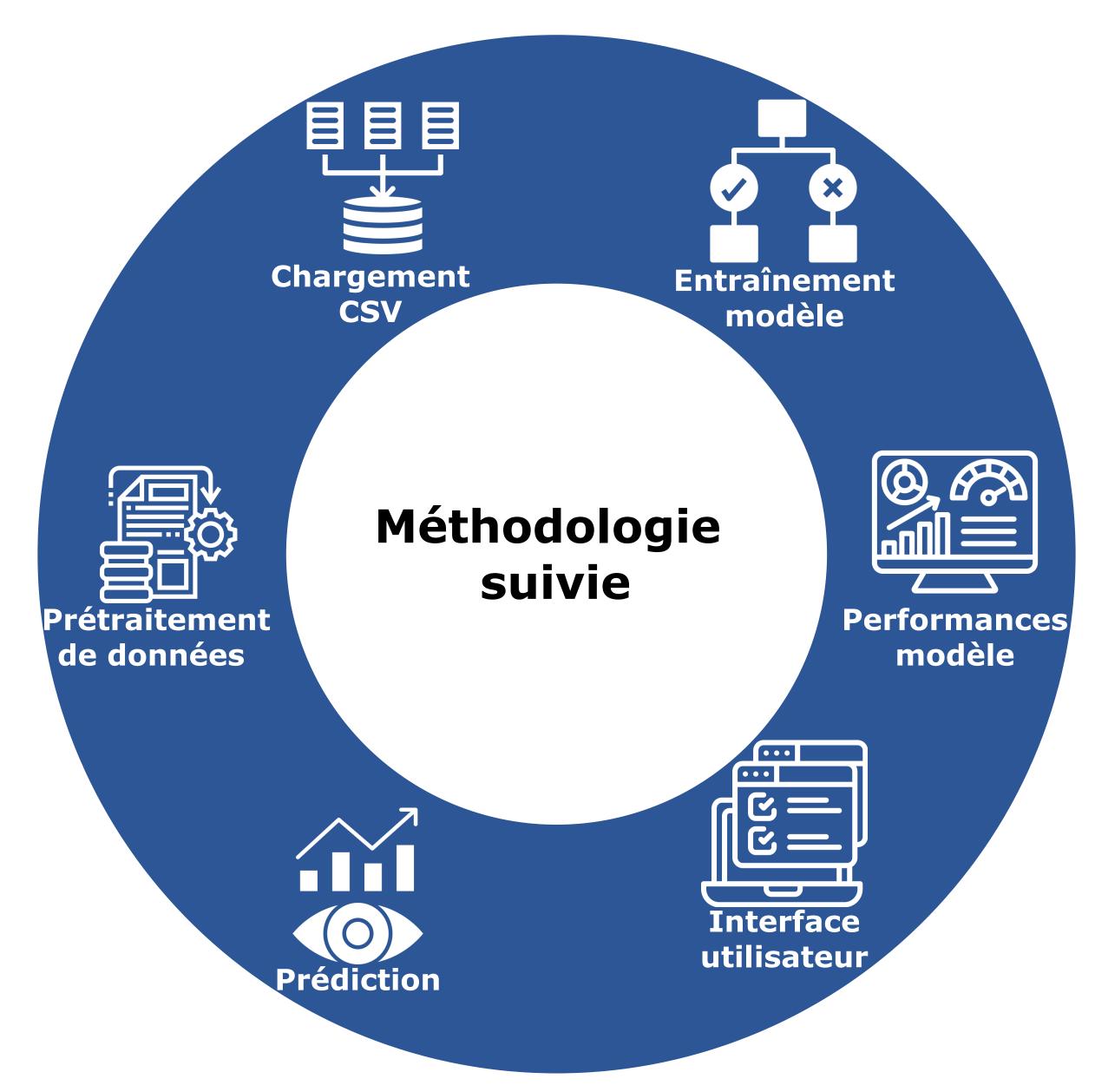



FIGURE 1 – Methodologie.

## Évaluation

- Évaluer la performance de l'arbre de décision.
- —Adopter une stratégie de validation consistant en la division des données en deux ensembles : ensemble d'apprentissage (67% des données) et de test (33% des données).
- Vérifier la capacité de généralisation du modèle.

## Résultats

TABLE 1 – Matrice de confusion sous forme de tableau.[1] [2] [3]

|          | Prédit Non | <b>Prédit Oui</b> |
|----------|------------|-------------------|
| Vrai Non | 161        | 0                 |
| Vrai Oui | 3          | 166               |

- Vrais négatifs (VN): Cela signifie que 161 exemples de la classe négative (non) ont été correctement classés comme tels.
- Faux positifs (FP): Il n'y a aucun exemple de la classe négative qui a été incorrectement classé comme positif.
- Faux négatifs (FN): Trois exemples positifs ont été mal classés comme négatifs.
- Vrais positifs (VP): 166. Cela signifie qu'il y a 166 exemples de la classe positive qui ont été correctement classés comme tels.
- Précision: le taux de reconnaissance global est d'environ 0.989, ce qui correspond à 98.9%.

En résumé, le modèle a très bien fonctionné, avec un petit nombre d'erreurs de classification.

## Conclusion

- Ce projet souligne l'importance croissante de la technologie médicale en fournissant des outils avancés pour évaluer et traiter les patients de manière plus efficace et précise.
- En perspective : L'intégration de données en temps réel permettrait une surveillance continue et une détection précoce des anomalies de santé, offrant ainsi de nouvelles possibilités pour améliorer la prise en charge médicale.

#### Références

- [1] Steinbrunn William Pfisterer Matthias Janosi, Andras and Robert Detrano. Heart Disease. UCI Machine Learning Repository, 1988. DOI: https://doi.org/10.24432/C52P4X.
- [2] Ian H. Witten, Eibe Frank, and Mark A. Hall. *Data Mining: Practical Machine Learning Tools and Techniques*. Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, Amsterdam, 3 edition, 2011.
- [3] Mangasarian Olvi Street Nick Wolberg, William and W. Street. Breast Cancer Wisconsin (Diagnostic). UCI Machine Learning Repository, 1995. DOI: https://doi.org/10.24432/C5DW2B.