Objectif

Permettre à l'étudiant de comprendre et de maîtriser les concepts et l'utilité de l'intelligence d'affaires. Présenter les différentes technologies utilisées en intelligence d'affaires. Donner un aperçu des méthodologies et techniques liées à la mise en place d'une solution d'intelligence d'affaires.

Contenu

Intelligence d'affaires: définition, caractéristiques, tendances, enjeux, impact au niveau de la prise de décision. Bénéfices tangibles des solutions d'intelligence d'affaires. Exemples d'application dans des entreprises. Entrepôt de données: différence entre entrepôt de données (datawarehouse) et magasin de données (datamart), approche Kimball versus approche Inmon, stratégie de mise en oeuvre des entrepôts de données, gestion d'un projet d'entrepôt de données, modélisation d'un entrepôts de données. Tableaux de bord de gestion: tableau de bord prospectif (Balanced Scorecard) de Kaplan et Norton, défis - enjeux liés à l'établissement des indicateurs de gestion tableau de bord de la gestion de la performance organisationnelle. Forage des données et vues multidimensionnelles (OLAP, ROLAP, MOLAP). Le forage des données: pré-requis et applications potentielles. Intégration des données et la gestion qualitative des données. Survol des outils d'intelligence d'affaires et critères de choix.