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Abstract
An impressive number of new climate change scenarios have recently become available to

assess the ecological impacts of climate change. Among these impacts, shifts in species

range analyzed with species distribution models are the most widely studied. Whereas it is

widely recognized that the uncertainty in future climatic conditions must be taken into

account in impact studies, many assessments of species range shifts still rely on just a few

climate change scenarios, often selected arbitrarily. We describe a method to select objec-

tively a subset of climate change scenarios among a large ensemble of available ones. Our

k-means clustering approach reduces the number of climate change scenarios needed to

project species distributions, while retaining the coverage of uncertainty in future climate

conditions. We first show, for three biologically-relevant climatic variables, that a reduced

number of six climate change scenarios generates average climatic conditions very close to

those obtained from a set of 27 scenarios available before reduction. A case study on poten-

tial gains and losses of habitat by three northeastern American tree species shows that

potential future species distributions projected from the selected six climate change scenar-

ios are very similar to those obtained from the full set of 27, although with some spatial dis-

crepancies at the edges of species distributions. In contrast, projections based on just a few

climate models vary strongly according to the initial choice of climate models. We give clear

guidance on how to reduce the number of climate change scenarios while retaining the cen-

tral tendencies and coverage of uncertainty in future climatic conditions. This should be par-

ticularly useful during future climate change impact studies as more than twice as many

climate models were reported in the fifth assessment report of IPCC compared to the previ-

ous one.
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Introduction
All ecological projections of the impacts of climate change ultimately rely on models simulating
climate change based on scenarios of anthropogenic forcing (Table 1). For its fifth assessment
report (AR5), the Intergovernmental Panel on Climate Change (IPCC) has selected new cli-
mate model simulations carried out under the framework of the Coupled Model Intercompari-
son Project Phase 5 (CMIP5), as well as new forcing scenarios, the Representative
Concentration Pathways (RCPs). This has resulted in an impressive number of new climate
change scenarios (Table 1) now available to conduct climate change impact studies. For exam-
ple, 138 global mean temperature projections for 2050 relative to 1986–2005 are presented in
AR5 [1]. Each was obtained from one of four RCPs combined to many (from 25 to 42) coupled
atmosphere-ocean general circulation models (AOGCMs).

Climate models (Table 1) are complex mathematical representations of the Earth’s climate
system as they couple many physical processes such as atmosphere flux, ocean circulation, land
surface and sea ice dynamics, snow cover, and permafrost [2]. They differ from each other [2,
3], notably in the parameters and functions used to describe the physical processes of the ocean
and atmosphere circulations. Forcing scenarios also differ from each other as they provide
alternative hypotheses about the development of human society, through different demo-
graphic, social, political, technological, and environmental assumptions [4]. To address uncer-
tainty in projected changes, the IPCC [5] thus recommends using a large ensemble of climate
change scenarios (Table 1) produced from various combinations of AOGCMs and forcing sce-
narios. Importantly, all climate change scenarios provided by IPCC should be considered plau-
sible and illustrative, and do not have probabilities attached to them [1].

In ecology, climate change scenarios are commonly used with species distribution models
(SDMs) to assess shifts in species range induced by climate change [6, 7]. SDMs correlate the
observed distribution of a species to a set of environmental predictors, including climate, and
use this relationship to project the potential distribution into the future [8–10]. Despite their
limitations [11, 12], SDMs provide a useful first approximation of the direction and magnitude
of potential impacts of climate change on species range. Like for AOGCMs, many SDMs are
available to model the distribution of a given species, due to the various statistical models and

Table 1. Glossary of important terms used in this paper.

Term Definition

Climate model Complex mathematical representation of the Earth ’s climate system coupling many
physical processes (i.e. atmosphere flux, ocean circulation, land surface and sea
ice dynamics, snow cover, and permafrost) [2].

Forcing scenario Hypothesis of the modification of the balance of incoming and outgoing energy in
the Earth-atmosphere system. The new generation of forcing scenarios, the
Representative Concentration Pathways (RCPs), provides potential greenhouse
gas concentration trajectories for the future whereas the Emissions Scenarios
(SRES) hypothetize the greenhouse gas emissions in the atmosphere.

Initial conditions In climate models (chaotic systems), initial conditions refer to starting values of
climate variables at a given place and time. Small changes in these starting values
could lead to different paths of the climatic system.

Climate change
scenario

Potential future climate projected by a climate model under a specific forcing
scenario and initial conditions. In general climate change scenarios are available
for 30-year periods.

Ensemble
forecasting

Large number of copies of a system, each of which represents a possible state of
this system. In climate change science, ensemble forecasting consists in using
climate change scenarios obtained from different climate models run under different
forcing scenarios and different initial conditions.

doi:10.1371/journal.pone.0152495.t001
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calibration and evaluation datasets available during SDM construction. It is thus standard
practice to use, in any single study, several SDM outputs in an ensemble framework [13]. How-
ever, it can become prohibitively time consuming to assess the impacts of climate change on
many species, using simultaneously many climate change scenarios and many SDMs. As a
result, researchers typically project species distributions under only one or a few climate change
scenarios. From 2002 to 2011, 55% of the studies that have projected species distribution under
climate change used a single AOGCM (Fig 1a) and 78% of them used only one or two forcing
scenarios (Fig 1b). Moreover, researchers often select climate change scenarios arbitrarily or
based on logistic constraints, and provide little or no justification about their choice. Yet differ-
ent modelling frameworks can lead to different projections of species distribution [14–16], and
possibly to conflicting interpretations [17].

In this context, a critical question is which and how many climate change scenarios are
required to carry out impact analyses that cover the range of possible climate futures. Surpris-
ingly, there is no publication aimed at presenting and testing an objective method to select an
appropriate subset of climate change scenarios among the wide range of possibilities [18] (but
see [19]). Given the importance of both taking into account the wide range of equally probable
climatic futures and avoiding computationally prohibitive study designs, developing an objec-
tive method that reduces the number of climate change scenarios needed to project species dis-
tributions while retaining the coverage of uncertainty in future climatic conditions would
constitute an important methodological progress. Here we describe and test such a method.

Materials and Methods

Study design
We first describe a k-means clustering approach allowing the objective selection of a subset of
climate change scenarios from a large group of 27 derived from nine AOGCMs coupled with
three forcing scenarios. We analyze the size and composition of the clusters obtained from this
approach and compare, for three biologically-relevant climatic variables, the distribution of
values obtained from the subset to that obtained from all 27 climate change scenarios. Sec-
ondly, we test the added value of the k-means clustering approach when projecting changes in
species distribution, through a case study involving potential gains and losses of habitat by
three northeastern American tree species. To do so, we compare future species habitat distribu-
tions projected from the subset of climate change scenarios (our proposed method) with those
obtained from the full set of 27 climate change scenarios, as well as with those resulting from
an arbitrary selection of just a few AOGCMs (the common practice).

Due to data availability when conducting this study, we worked with the forcing scenarios
of the Special Report on Emissions Scenarios (SRES) [20] and the climate model simulations of
the third phase of the Coupled Model Intercomparison Project (CMIP3), both used in AR4,
rather than with the RCPs and climate model simulations of the CMIP5, used in AR5. How-
ever, our suggested approach remains entirely valid for the climate change scenarios used in
AR5, or for those to be used in future assessment reports of the IPCC.

Study area
This study is part of a larger project [21, 22] exploring the impacts of climate change on Quebec
biodiversity. Although focused on Quebec, the study area covers all the U.S. states east of the
100th meridian (excluding Florida) because many species found in Quebec are also present
more to the South, and their niche cannot be modelled adequately without distribution data
from the central parts of their range. We gridded our study area (9,613 cells of 20 km x 20 km)
using the grid developed by Prasad et al. [23], and extending it to Quebec.
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Fig 1. Use of climate models and emissions scenarios in papers reporting species distribution
models.Histograms show the number of publications per year (2002–2011) using 1, 2, 3 or > 3 coupled
atmosphere-ocean general circulation models (AOGCMs) (a) and 1, 2, 3 or 4 emissions scenarios from the
special report of emissions scenarios (SRES) (b) to project species distribution under climate change. Data
come from a literature search in ISI Web of Science performed on June 5, 2013 and using the following
search settings: model* AND species distribution OR ecological niche OR habitat suitability OR bioclimatic
envelope OR environmental niche OR habitat distribution OR niche-based AND climat* change OR global
warm*.

doi:10.1371/journal.pone.0152495.g001
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Species data
Wemodelled current and future habitat distributions of the American Beech (Fagus grandifo-
lia), the Pitch Pine (Pinus rigida), and the Blackjack Oak (Quercus marilandica). We chose these
three species because they represented different patterns of spatial extent and range boundaries.
For the U.S., we obtained presence/absence data online from the USDA tree Atlas website [24]
whereas we obtained Quebec data from an extensive database of more than 95,000 forest plots
of the third decennial inventory of the Ministry of Forests, Wildlife and Parks. We aggregated
the plot level presence/absence data from Quebec at the 20 km x 20 km cell resolution.

Climate data
We related species distribution to climate using three climatic variables that influence plant
survival and growth: mean annual temperature (°C), total annual precipitation (mm), and use-
ful precipitation (ratio of summer precipitation to total annual precipitation). These three vari-
ables describe the main climatic gradients while reducing the multicollinearity which biases
parameter estimation in SDMs. We derived these three climatic variables for the reference
period (1961–1990) from climatic surfaces available at the U.S. Forest Service, Rocky Mountain
Research station website (http://forest.moscowfsl.wsu.edu/climate). Further details on these
interpolated weather station data are available in Rehfeldt [25]. We downloaded these data
with a resolution of 0.0083 decimal degrees (� 1 km), and subsequently averaged for each
20 km x 20 km grid cell.

We produced future climate scenarios using output from nine AOGCMs (Table 2) available
through CMIP3 [26]. These nine AOGCMs were those, among a larger ensemble, that were
available for our purposes because they simulated climate in our study area for 1961–1990
atmospheric conditions as well as for anticipated conditions under three SRES scenarios (A2
family, A1B, and B1, [20]. In total, 27 future climate scenarios were thus available for our pur-
poses (Table 2). For each we obtained temperature and precipitation data for 2071–2100 using
the “change field”method [27] (see also S1 Text).

Description of the approach used to select climate change scenarios
We used the k-means clustering approach [28] to select climate change scenarios. This method
iteratively partitions n objects, described by p variables, into k clusters in which each object
belongs to the cluster with the nearest cluster centroid. The choice of initial seeds (i.e. started val-
ues of the cluster centers) is important and we followed Peterson et al. [29] who recommend the
use of a hierarchical clustering method to define initial seeds for the k-means algorithm [30].

First, we built a climate distance matrix using Euclidean distances between the 27 climate
change scenarios (Table 2) described by the three standardized climatic variables (Step 1). Stan-
dardization is necessary in order to avoid differences in units having a weighting effect on the
clustering algorithm. Then, we applied hierarchical clustering on this distance matrix using the
Ward’s minimum variance method [31] as the agglomeration criterion (Step 2). From this first
grouping, we isolated k clusters and calculated their centroids (Step 3). Next, we performed a
k-means clustering where initial seeds corresponded to the cluster centroids calculated from
the hierarchical clustering (Step 4). The iterative process during which cluster centers are recal-
culated was performed 999 times in order to find the optimum partitioning with k clusters.
Finally we calculated the ratio of the between-group sums of squares to the total sums of
squares (herein referred as the Rsq statistic; Step 5), which quantifies the amount of variability
captured by the clustering.

In order to determine an appropriate value of k, we repeated steps 3 to 5 by varying k from 1
to 27. The number of clusters to be used can be determined by evaluating the degree of group
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partitioning using an Rsq profile plot describing the Rsq statistic as a function of the number of
clusters (S2 Text). We determined the optimal number of clusters under a logic based on a
trade-off between costs (number of clusters) and benefits (explained variance), and we identi-
fied the number of clusters from which the net benefit decreases (see details in S2 Text). Finally,
for each cluster, we selected the climate change scenario that was nearest to the cluster center
for use in subsequent SDM projections.

Species distribution modelling
Wemodelled the distribution of Fagus grandifolia, Pinus rigida and Quercus marilandica using
seven statistical algorithms implemented in the BIOMOD package [32] developed for the R sta-
tistical software [33]. These seven statistical models included two regression techniques (gener-
alized additive models and generalized linear models), two classification approaches (mixture

Table 2. Description of the climate change scenarios used in this study.

Center AOGCM SRES ΔTavg (°C) ΔPrec (%) ΔPrat (%)

CCCMA CGCM3.1 (T47) A2 +5.0 +18.2 −4.2

A1B +3.9 +15.3 −3.6

B1 +2.8 +7.7 −3.2

CNRM CM3 A2 +4.5 +9.4 −4.0

A1B +3.5 +8.4 −3.1

B1 +2.2 +5.4 −2.5

CSIRO MK3.0 A2 +3.9 +11.8 −1.6

A1B +2.8 +6.7 −2.8

B1 +1.8 +4.8 −1.5

CSIRO MK3.5 A2 +4.7 +11.0 −2.7

A1B +3.9 +15.4 −0.7

B1 +2.9 +7.3 −2.5

GFDL CM2.0 A2 +5.2 +3.9 −7.4

A1B +4.3 +9.6 −3.4

B1 +2.8 +8.1 −2.0

IPSL CM4 A2 +6.9 +2.8 −2.4

A1B +5.8 +5.4 −2.8

B1 +4.2 +1.6 −2.2

CCSR MIROC3.2 (Medres) A2 +6.8 −0.8 −9.3

A1B +5.8 +3.1 −7.1

B1 +4.0 +5.7 −5.2

MIUB ECHO-G A2 +5.0 +12.6 −0.1

A1B +4.8 +11.4 −0.2

B1 +3.4 +5.9 +0.3

MRI CGCM2.3.2 A2 +3.7 +13.7 −1.1

A1B +3.3 +11.0 −1.3

B1 +2.5 +8.9 +0.2

Average ± SD +4.1 ± 1.3 +8.3 ± 4.5 −2.8 ± 2.3

Each scenario combines an atmosphere-ocean general circulation models (AOGCM) from a given research center to an emissions scenario from the

special report of emissions scenarios (SRES). ΔTavg: projected change in average annual temperature between 1961–1990 and 2071–2100 for the study

area; ΔPrec: projected change in total annual precipitation; ΔPrat: projected change in useful precipitation (ratio of summer precipitation to total annual

precipitation). Minimum and maximum values for each variable are in bold character.

doi:10.1371/journal.pone.0152495.t002
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discriminant analysis and classification tree analysis), and three machine learning methods
(artificial neural networks, generalized boosted models and random forest).

We randomly split the initial dataset in two datasets to evaluate predictive performance of
models on pseudo-independent data [34]. The first dataset was a calibration dataset containing
70% of the data, while the second was an evaluation dataset containing the remaining 30%. We
repeated this split-sample procedure 20 times. For each species, we thus calibrated 140 SDMs
(20 datasets x 7 statistical models). We evaluated predictive performance of each of these models
using the area under the curve (AUC) of the receiver-operating characteristic (ROC) plot [35].

From these calibrated models, we simulated the potential distribution of the three species
habitat for the reference period (1961–1990) and obtained 140 probabilities of occurrence by
grid cell for each species. We simulated future habitat distributions by projecting models under
each of the 27 climate change scenarios for the period 2071–2100, and thus produced 3,780
future potential probabilities of occurrence (140 SDMs x 9 AOGCMs x 3 SRES emissions sce-
narios) per grid cell for each species.

Aggregating projections of species distributions for the reference period
We summarized, for each species, the 140 distribution projections for the reference period
using a consensus technique [13], aggregating probabilities of occurrence using the weighted
average approach [36]. We weighted probabilities of occurrence by the AUC of their corre-
sponding models and averaged them to produce a single probability of occurrence per grid cell
for the period 1961–1990. Then, we transformed these consensual probability values into pres-
ence/absence data by using the sensitivity-specificity sum maximization approach [37].
Although some information is lost when consensual probabilities are transformed into pres-
ence/absence data, this was needed to calculate percentages of grid cells projected to be gained
or lost by species, a standard practice in climate change biology [38–40].

Aggregating projections of species distributions for 2071–2100
After projecting species habitat distribution under climate change scenarios selected by the k-
means approach, we summarized the range of projections using the weighted average approach.
Because the size of clusters was heterogeneous, we also weighted the future probabilities of occur-
rence by the number of scenarios in each cluster, to avoid an over-representation of climate
change scenarios from small clusters. Future projections of species habitat distributions obtained
under the climate change scenarios selected by the k-means algorithm were thus double-
weighted, according to Eq (1), where �x� is the weighted average of probabilities of future occur-
rence for a given pixel, xij is the probability of future occurrence obtained under the statistical
model i coupled with the climate change scenario j for the same pixel, AUCi is the AUC of the
statistical model i, n is the total number of calibrated statistical models (here, n = 140), nkj is the
number of climate change scenarios in the cluster j, and k is the total number of selected clusters.

�x� ¼
Xn

i¼1

Xk

j¼1

xij
AUCiPn

m¼1 AUCm

nkjPk
p¼1 nkp

ð1Þ

As one of our objectives was to compare outcomes from the k-means algorithm with those
obtained from the full set of 27 climate change scenarios, we also weighted averaged future spe-
cies habitat distributions projected under the 27 climate change scenarios. These probabilities
of occurrence were simple-weighted by the AUC of their corresponding models.

We transformed consensual future probabilities of occurrence in a presence/absence form,
as had been done for consensual probabilities of occurrence for the reference period by using
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the transformation thresholds calculated for the reference period. This allowed us calculating
the percentage of grid cells projected to be gained (i.e. the number of cells where the species
was absent during the reference period but will potentially be present in the future if it colo-
nizes newly available climatic habitat, divided by the total number of cells where it was present
during the reference period) or lost (i.e. the number of cells where the species was present dur-
ing the reference period but will potentially be absent in the future, divided by the total number
of cells where it was present during the reference period) by a given species. We assumed for
this exercise an unlimited dispersal scenario.

Impact of an arbitrary selection of AOGCMs on projected species
distribution
Since it is common practice during impact studies to select just a few AOGCMs arbitrarily, we
performed a sensitivity analysis to assess the impact of an arbitrary selection of AOGCMs on
future projected species distribution. We aggregated by the weighted average approach (using
the AUC as the weight) the projected future species distributions obtained from q AOGCMs,
with q varying from 1 to 9 (the total number of available AOGCMs for this study). For each
AOGCM, we used the three available SRES emissions scenarios. For each value of q, we selected
all possible combinations of AOGCMs. For example, if two AOGCMs had to be selected, 36
combinations of two AOGCMs were possible. In this case, 36 consensual projections were per-
formed, each resulting in a weighted average of 840 future projections (140 SDMs x 2
AOGCMs x 3 SRESs). For each combination of AOGCMs, we also computed the percentages
of species gains and losses, assuming unlimited dispersal.

We did all the analyses using the R statistical software [33] and performed cartography
using ARCGIS Desktop version 9.3.1 (ESRI, Redlands, CA, USA).

Results

Selection of climate change scenarios
The k-means clustering led to six clusters summarizing 83% of the variance in the climate
change scenarios (S2 Text). Cluster size varied from two to eight climate change scenarios and
the composition of clusters did not reflect consistently AOGCMs or forcing scenarios (Fig 2).
With the exception of CM4, all AOGCMs belonged to� two clusters (Fig 2).

For the three analyzed climatic variables, both the range and the distribution of projected
values were very similar between the average obtained from all the 27 climate change scenarios
and the weighted average (using the number of climate change scenarios by clusters as the
weight) obtained from the six climate change scenarios selected by the k-means algorithm (Fig
3, mid row). Both 10th (Fig 3, top row) and 90th percentiles (Fig 3, bottom row) show similar
patterns in the distribution of the projected values of the three climatic variables.

Performance of species distribution models
Quercus marilandica showed the lowest mean predictive performance (AUC = 0.86 ± 0.08 SD;
see also S3 Text). However, according to the interpretation of the AUC values [41] models still
remained accurate to project the potential future habitat distribution of this species. Fagus
grandifolia and Pinus rigida showed good to excellent predictive performances
(AUC = 0.89 ± 0.04 SD and 0.90 ± 0.09 SD, respectively; see also S3 Text).

Impact of an arbitrary selection of AOGCMs
Both percentages of gains and percentages of losses in species habitat distribution were highly
variable and depended on the number and choice of AOGCMs (Fig 4). Moreover, even using a
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high number of AOGCMs, uncertainty in projected species range could be very important. For
example, the projected habitat loss of Quercus marilandica varied from 40% to 82% of pixels
according to the random set of six AOGCMs used to estimate potential future loss (dark green
dots in Fig 4c). Negative trends between the number of AOGCMs and the range of changes
(maximum minus minimum values) in species habitat distribution (Fig 4d) showed that
increasing the number of AOGCMs (that is, better taking into account the uncertainty

Fig 2. Clustering of climate change scenarios. Scatter plots show the clustering of climate change scenarios in two dimensions: standardized delta value
(Δ) of total annual precipitation as a function of Δmean annual temperature (a), Δ total annual precipitation as a function of Δ useful precipitation (b), Δ useful
precipitation as a function of Δmean annual temperature (c).

doi:10.1371/journal.pone.0152495.g002
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originating from AOGCMs) reduced uncertainty in the projected change on species habitat
distribution.

Mapping spatial differences
Under a weighted average performed on the six climate change scenarios selected by the k-
means algorithm, Fagus grandifolia habitat was projected to gain 35.4% of pixels (compared to

Fig 3. Projected climate for three biologically-relevant variables.Graphs show probability density functions of projected climate for mean annual
temperature (first column), total annual precipitation (second column) and useful precipitation (third column). The 27 climate change scenarios are plotted as
gray lines. The solid and dashed black lines represent the 10th percentile values (top row), the average values (mid row), and the 90th percentile values
(bottom row) calculated on each cell across the 27 climate change scenarios (solid lines) or the six climate change scenarios selected by the k-means
algorithm (dashed lines).

doi:10.1371/journal.pone.0152495.g003
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32.3% when considering all 27 climate change scenarios) and to lose 48.6% of pixels (compared
to 57.9%). Corresponding values were 75.8% versus 70.3% for gains and 70.9% versus 72.6%
for losses in the case of Pinus rigida, and 121.9% versus 116.7% for gains and 57.0% versus
64.6% for losses in the case of Quercus marilandica.

We compared the potential future habitat distribution projected by the 27 climate change
scenarios with the one projected under the six climate change scenarios selected by the k-

Fig 4. Scatter plots showing uncertainty arising from an arbitrary selection of AOGCMs. Scatter plots (a), (b), and (c) show the projected habitat losses
and gains obtained under each ensemble forecasting realized with one to nine AOGCMs for Fagus grandifolia, Pinus rigida, andQuercus marilandica,
respectively (dashed lines show average projected losses and gains). Scatter plot (d) represents differences between maximum and minimum projected
losses (dashed lines) and between maximum and minimum projected gains (solid lines) for Fagus grandifolia (circles), Pinus rigida (squares), andQuercus
marilandica (triangles) using one to eight AOGCMs.

doi:10.1371/journal.pone.0152495.g004

Selecting Future Climate Change Scenarios

PLOS ONE | DOI:10.1371/journal.pone.0152495 March 25, 2016 11 / 17



means approach (Fig 5). This shows that spatial differences are located at the leading and rear
edges of the species range, whatever the species considered. More specifically, the weighted
average performed on the six climate change scenarios overestimated the projection obtained
under a weighted average performed under the 27 climate change scenarios by predicting a
more pronounced northward shift.

Discussion

Benefits of the k-means clustering approach
Our results show that a reduced number of six climate change scenarios selected by the k-
means clustering approach generate average climatic conditions very close to those obtained
from of the full set of 27 climate change scenarios available before reduction. In addition,
although some discrepancies did appear at the edges of future tree species habitat distributions
when comparing projected distributions obtained with the full set of scenarios versus the
reduced set (Fig 5), future tree habitat distributions were overall very similar. Our study repre-
sents one of the very first applications of the k-means clustering approach in climate change
biology. It also provides clear guidance to choose objectively a reduced number of climate
change scenarios among the many available alternatives.

The k-means clustering enables a significant reduction of redundancy between the most
similar climate change scenarios because it decreases the number of climate change scenarios
while retaining the coverage of uncertainty in future climate conditions. This is important
because many sources of climate uncertainty exist beyond AOGCMs and forcing scenarios,
considered here. For instance, initial conditions of AOGCMs (Table 1) also contribute to future

Fig 5. Effects of k-means clustering on potential future species distributions.Maps show differences between the projected climatic habitat
distributions (2071–2100) obtained under an ensemble forecasting with the 27 climate change scenarios and an ensemble forecasting with the six climate
change scenarios selected by the k-means algorithm for the three tree species.

doi:10.1371/journal.pone.0152495.g005
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climate uncertainty [42]. Addressing this uncertainty requires multiple runs of the same
AOGCM-forcing scenario combination for which initial conditions are slightly perturbed.
Another source of uncertainty originates in the downscaling method used to refine AOGCM
projections at the regional scale [43]. Statistical downscaling (spatial interpolations after cor-
rection for topographic, hydrographic and geographical effects) and dynamic downscaling
(regional climate models) can be used, with potential effects on projections of species distribu-
tion under climate change assumptions. Therefore, the initial set of climate change scenarios
considered by the k-means clustering approach could be increased to include AOGCM, forcing
scenario, AOGCM run, and downscaling method as uncertainty factors [18]. It is also notewor-
thy that although the global mean temperature response simulated by CMIP5 and the preced-
ing CMIP3 (there was no CMIP4) models is very similar, the range of temperature change
across all scenarios is wider in AR5 than in AR4 because the RCPs include a strong mitigation
scenario (RCP2.6) that had no equivalent among the SRES scenarios. In addition, CMIP5 has
more than twice as many models as CMIP3 [44]. This again suggests that our proposed method
might gain relevance in the years to come, when attention to alternative climate trajectories
might increase among climate change biologists.

Studies using several forcing scenarios usually present future projections with the implicit
assumption that each forcing scenario generates a different family of projections [6, 45, 46].
Here we aggregated projections from multiple SDMs, multiple AOGCMs and multiple forcing
scenarios, and found that composition of clusters was cutting across families formed by forcing
scenarios or AOGCMs (Fig 2). It is thus much more informative for practitioners to see a
range of climate change scenarios (and associated projections of e.g. species distributions) that
represents the full variability of available climate change projections, rather than a range of cli-
mate change scenarios than simply reflects the range of available forcing scenarios.

Garcia et al. [19] recently used what they called a “central cluster” approach to summarize
the general tendencies among 17 AOGCMs without losing higher order variability reflected in
extreme projections. They assessed similarities among AOGCM simulations for each variable
projected in the late-century, then grouped co-varying projections before averaging them, and
finally used k-means to partition AOGCMs into groups of co-varying projections. Our proposed
approach, derived independently, differs in that we selected the existing climate scenarios
located closest to each cluster’s center, whereas they projected species distributions from “artifi-
cial” climate scenarios that were averages obtained from each cluster. This may be an important
difference for some biodiversity managers, who need to communicate projections of species dis-
tributions while they are still attached to some existing climate scenarios. Our approach also dif-
fers in that we averaged future species habitat distributions while weighing for both
performance of statistical models and number of climate scenarios within clusters, while the lat-
ter was not a weighing factor in Garcia et al. [19]. Biodiversity managers generally prefer to give
less importance to the less extreme climate scenarios, although each is equally plausible.
Another difference is that the selection of climate scenarios presented in Garcia et al. [19] is
more spatially explicit than ours. We recognize that this as an avenue for future development of
our proposed method, especially at large spatial scale. Indeed, differences in projected climate
change are spatially explicit and it would be relevant to take into account this spatial structure to
define similar projections. Given the increasing wealth of climate scenarios available for ecologi-
cal modelling studies, we urge others to build on our efforts and on those of Garcia et al. [19].

Pitfalls of arbitrary selection of climate change scenarios
Projected changes in species habitat distribution were highly variable when climate change sce-
narios were selected arbitrarily. This was observed even when incorporating several AOGCMs
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in the process of projecting potential changes in species habitat distribution (Fig 4), although
uncertainty in the projected future species habitat distribution was reduced when the analyses
included more AOGCMs. Again, this is problematic given that biodiversity managers need
robust projections.

Other studies have investigated uncertainty in species distribution projections [47–50] but,
to our knowledge, ours is the first exploration of the consequences of an arbitrary selection of
AOGCMs on projected species distribution. Our results emphasize both the need to use multi-
ple climate change scenarios to project species distribution in time, and the need to use an
appropriate method to select among climate change scenarios. This is particularly true when
climate-induced changes are assessed on a large number of species and when a reduced num-
ber of climate change scenarios has to be selected.

Conclusions
The use of a clustering approach to select an objective subset of climate change scenarios offers
an appropriate and efficient guidance to project species distribution through time. This method
should be most useful to select an appropriate subset of climate change scenarios in the context
of regional impact studies, because the realism of climate change scenarios is region-specific
and their arbitrary selection could lead to a misrepresentation of future climate possibilities at
the regional scale. We also argue that the approach presented here is relevant for a wide range
of studies outside the field of climate change biology, such as those dealing with the effects of
climate change on transportation infrastructures, human health, or economic systems.
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