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abstract: The influence of variation in individual state on key re-
productive decisions impacting fitness is well appreciated in evolu-
tionary ecology. Rowe et al. (1994) developed a condition-dependent
individual optimization model predicting that three key factors im-
pact the ability of migratory female birds to individually optimize
breeding phenology to maximize fitness in seasonal environments: ar-
rival condition, arrival date, and ability to gain in condition on the
breeding grounds. While empirical studies have confirmed that greater
arrival body mass and earlier arrival dates result in earlier laying, no
study has assessed whether individual variation in energetic manage-
ment of condition gain effects this key fitness-related decision. Using
an 8-year data set from over 350 prebreeding female Arctic common
eiders (Somateria mollissima), we tested this component of the model
by examining whether individual variation in two physiological traits
influencing energetic management (plasma triglycerides: physiologi-
cal fattening rate; baseline corticosterone: energetic demand) predicted
individual variation in breeding phenology after controlling for arrival
date and body mass. As predicted by the optimization model, individ-
uals with higher fattening rates and lower energetic demand had the
earliest breeding phenology (shortest delays between arrival and laying;
earliest laying dates). Our results are the first to empirically determine
that individual flexibility in prebreeding energetic management influ-
ences key fitness-related reproductive decisions, suggesting that indi-
viduals have the capacity to optimallymanage reproductive investment.

Keywords: individual optimization, breeding phenology, fattening
rate, energetic management, triglycerides, glucocorticoids.

Introduction

Life-history trade-offs are driven by the allocation of limited
resources tomultiple life-history traits and decisions (Stearns
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1992; McNamara and Houston 1996). As such, because in-
dividual state is predicted to be indicative of the amount of
resources available to allocate to multiple life-history traits
and decisions, it is thought to be a primary driver regulating
individual optimization of life-history trade-offs (Stearns
1992; Kisdi et al. 1998; Moore and Hopkins 2009). In migra-
tory avian species breeding in temporally constrained, sea-
sonal environments, the timing of reproduction is an impor-
tant fitness-related decision influencing the quantity and
quality of an individual’s investment (Perrins 1970; Smith
1993; Lepage et al. 2000; Garant et al. 2007; Brommer and
Rattiste 2008) and therefore its subsequent reproductive suc-
cess (Lepage et al. 2000; Love et al. 2010; Descamps et al.
2011). Individuals that can arrive earlier and in better con-
dition are predicted to invest in reproduction earlier, pro-
duce more offspring with higher survival, and achieve higher
reproductive success (Rowe et al. 1994; Kisdi et al. 1998;
Morris 1998). The optimal combination of reproductive tim-
ing and reproductive investment is thought to result from
the trade-off of delaying reproduction to invest in additional
offspring (greater reproductive investment) and the declin-
ing value of offspring as the breeding season progresses (di-
minished gains from reproductive investment due to later
timing of reproduction; Drent and Daan 1980; Rowe et al.
1994; Morris 1998; Lepage et al. 2000; Bêty et al. 2003).
To develop testable hypotheses for the assumed relation-

ships between timing of arrival and body condition at arrival
on the breeding grounds, timing of laying, and investment
in reproduction (i.e., clutch size), Rowe et al. (1994) formal-
ized a condition-dependent individual optimization model
largely centered aroundmigratory birds breeding in seasonal
environments (fig. 1, based on figs. 1–5 in Rowe et al. 1994).
Themodel predicts that individuals arriving frommigration
to the breeding grounds earlier and in better body condition
(i.e., higher bodymass or size-corrected bodymass) have the
potential to acquire the local resources they need to fuel re-
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Mechanisms of Individual Optimization 435
production earlier and therefore initiate reproduction earlier,
a key fitness-related parameter inmany avian species (Drent
and Daan 1980; Rowe et al. 1994; Lepage et al. 2000; Bêty
et al. 2003; Descamps et al. 2011). Although applied in insect
(Johansson and Rowe 1999), mammal (Dobson and Mich-
ner 1995;Marrow et al. 1996;Morris 1998), reptile (Doughty
1996; Doody et al. 2003), and fish (Cargnelli and Neff 2006;
Poulos andMcCormick 2015) systems, the model’s ultimate
goal is to examine the mechanisms behind the well-known
seasonal decline in clutch size in many avian species, where
earlier laying dates should be associated with greater invest-
ment in reproduction (i.e., clutch size; Drent andDaan 1980;
Rowe et al. 1994; Bêty et al. 2003; Descamps et al. 2011). In-
dependent of arrival date and condition, Rowe et al. (1994)
alsomade a second set of important predictions that, to date,
have received far less attention in the literature. They pre-
dicted that once on the breeding grounds, individuals with
the ability to gain in condition faster (i.e., optimize energetic
management) and therefore fuel investment in reproduc-
tion sooner should be able to lay earlier, even after control-
ling for variation in arrival date and body mass (see figs. 4, 5
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in Rowe et al. 1994). The biological implications of this pre-
diction suggest that even females arriving with lower body
mass or at a later date but able to efficiently manage their en-
ergetics (i.e., quickly accumulate resources needed for repro-
duction) may be able to lay earlier and invest more in repro-
duction than previously appreciated (fig. 1, scenario A vs. B
and C vs. D). Although there have been some empirical tests
of this optimization model with regard to arrival date and
body mass at arrival on the breeding grounds (Bêty et al.
2003; Descamps et al. 2011), a substantial amount of varia-
tion in reproductive decisions remains unexplained. Unfor-
tunately, it has been difficult to empirically test for the effects
of individual variation in the prebreeding rates of condition
gain directly, since this requires the capture of free-living in-
dividuals twice to assess condition gain (e.g., before birds
initiate follicle recruitment and immediately after they com-
mence laying)whilemitigating thewell-known effects of cap-
ture stress on breeding activities (Love et al. 2004; Buttler
et al. 2011; Legagneux et al. 2012).
Physiological traits have long been viewed as central reg-

ulators of key life-history decisions (Ketterson and Nolan
Figure 1: Condition-dependent individual optimization model (adapted from Bêty et al. 2003). The short-dashed horizontal line indicates the
body-condition threshold at which individuals can invest in and commit to reproduction. The upward-diagonal solid lines represent individual
gains in condition leading up to their optimal combinations of laying date and breeding investment (represented by the downward-diagonal
solid line). The vertical dotted lines indicate predicted laying dates, and the horizontal long-dashed lines indicate predicted investment (clutch
size). The letters represent the potential outcomes for individuals with varying fattening rates (slopes). Individuals with a higher rate of con-
dition gain during prebreeding should meet the optimal combinations earlier (shorter delay) and lay earlier (A vs. B and C vs. D; Rowe
et al. 1994) and potentially mitigate the effects of late arrival (B vs. C) or poorer body condition after arrival on the breeding grounds.
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1999; Williams 2008). Measures of energetic physiology in
particular have been proposed as prime candidates for me-
diating underlying individual variation in reproductive de-
cisions, because they are mechanistic proxies of individual
state and can require the capture of an individual only once
(Zera and Harshman 2001; Ricklefs and Wikelski 2002;
Harshman and Zera 2007; Zera et al. 2007). Plasma levels
of triglycerides (TRIG) and baseline glucocorticoids (GCs)
in particular have recently been identified for their potential
role in influencing reproductive decisions (Williams 2012;
Love et al. 2014; Hennin et al. 2015) and may therefore be
useful for empirically testing predictions of condition-
dependent models in free-living species.

Plasma TRIG is a metabolite present in very-low-density
lipoprotein, which increases following foraging and is the
primary method in which fat is deposited to adipose tissues
(Gibbons et al. 2004). Plasma TRIG titers from one sample
have been shown to correlate positively with increases in
body mass in bats (McGuire et al. 2009), turtles (Price et al.
2013), and many free-living and captive avian species in-
cluding warblers (e.g., Jenni-Eiermann and Jenni 1994; Jenni
and Jenni-Eiermann 1996; Jenni and Schwilch 2001), shore-
birds (Williams et al. 1999; Cerasale and Guglielmo 2006;
Lyons et al. 2008), and ducks (Anteau and Afton 2008).
As such, in many avian species, a single sample of plasma
TRIG has been useful for characterizing the accumulation
of fat stores (Jenni-Eiermann and Jenni 1994; Cerasale and
Guglielmo 2006) and rate of gain in condition (Williams
et al. 1999). However, once oviparous females begin growing
their follicles in preparation for ovulation (known as the rapid
follicular growth phase), females undergo amechanistic shift
from producing TRIG for somatic fattening to producing
yolk-targeted very-low-density lipoprotein for lipid deposi-
tion to the yolks of eggs (Salvante and Williams 2002; Sal-
vante et al. 2007; Williams 2012). Therefore, to use plasma
TRIG as a relevant measure of physiological fattening, it is
critical to know the exact breeding stage of a given individual.

Largely studied for their role in the stress response, glu-
cocorticoids (GCs) are a group of pleiotropic hormones that,
at baseline levels (i.e., measuredwithin fewer than 3min post-
capture; Wingfield et al. 1982; Schoech et al. 1999; Romero
and Reed 2005), play very important roles inmanaging daily
and seasonal energetic demand (Dallman et al. 1993; Romero
2002; Landys et al. 2006; Crespi et al. 2013), largely by main-
taining homeostasis through their role in gluconeogenesis
(Sapolsky et al. 2000; McEwan and Wingfield 2003). Base-
line GCs are often elevated to support the predictable ener-
getic demands of specific life-history stages (e.g., reproduc-
tion; Dallman et al. 1993; Romero 2002; Landys et al. 2006;
Crespi et al. 2013). Recent correlative andmanipulative stud-
ies examining baseline corticosterone (CORT; the primary
avian glucocorticoid) have indicated that it increases prior
to reproduction to potentially fulfill a preparatory role for
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the energetic demands ahead (Love et al. 2014; Hennin et al.
2015), likely due to the relationship between baseline CORT,
foraging behavior, and fat deposition (Holberton 1999; Lan-
dys et al. 2004; Lõhmus et al. 2006; Angelier et al. 2007a; Hol-
berton et al. 2007; Crossin et al. 2012; Hennin et al. 2016).
Indeed, experimental increases in baseline levels of CORT
have been shown to directly, causally influence increases
in body mass, likely via increased foraging behavior and
fat deposition (Hennin et al. 2016). Nonetheless, since base-
line GCs have pleiotropic effects on other endocrine path-
ways (e.g., the hypothalamic-pituitary-gonadal axis; Miller
et al. 2009), elevations even within a baseline range can po-
tentially impact the functioning of other traits and endo-
crine pathways. Therefore, given that individuals must man-
age baseline GC elevations carefully to optimize impacts
across endocrine systems, baseline CORT is a prime candi-
date for influencing both changes in body mass and overall
energetic management in individuals that are preparing to
invest in reproduction. By sampling individuals prior to com-
mitting to reproductive investment and measuring both the
instantaneous physiological fattening rate (plasma TRIG)
and a driver of energetic demand (baseline plasma CORT),
we have the potential to quantify the mechanisms mediat-
ing the ability of individuals to optimize energetic manage-
ment to mechanistically test Rowe et al.’s (1994) condition-
dependent individual optimization model.
Here we use data on plasma TRIG and baseline CORT

collected from over 350 prebreeding Arctic-breeding female
common eiders (Somateria mollissima) across 8 years to
empirically test whether individual variation in prebreeding
energetic physiology (fattening rates and energetic manage-
ment) influences the timing of breeding within the context
of the condition-dependent individual optimization model
(Rowe et al. 1994; Bêty et al. 2003). Capital breeding birds
use only endogenous fat stores to fuel reproduction, whereas
income breeders use resources acquired solely from local,
immediate foraging (Stephens et al. 2009). Common eiders
have amixed, capital-income breeding strategy using a com-
bination of stored endogenous resources and resources ac-
quired from current, local foraging to grow their follicles
and therefore must feed intensively during the prebreeding
period (Sénéchal et al. 2011). As such, female common eiders
are an ideal system for examining the energetic physiologi-
cal mechanisms mediating reproductive decisions because
they (i) must reach a body mass threshold to initiate follicle
growth (Sénéchal et al. 2011; Hennin et al. 2015); (ii) must
acquire enough endogenous resources to fuel a 24-day incu-
bation period in which they fast (Bottitta et al. 2003), other-
wise risking nest abandonment (Bustnes and Erikstad 1991);
(iii) reproduce within a highly seasonal environment and
therefore must optimally time reproduction tomaximize re-
productive success (Love et al. 2010); and (iv) have previously
been shown to be a model species for testing predictions of
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condition-dependent individual optimization models (e.g.,
the causal relationship between prebreeding body condition
and laying date was shown experimentally; Descamps et al.
2011).

To empirically test whether the rate of condition gainmea-
sured through energetic physiology influences breeding phe-
nology, we separated the model into two testable compo-
nents as predicted by Rowe et al. (1994): (i) the delay before
laying (time required to sufficiently gain in condition and
reach the optimal combinations of laying date and breeding
investment) and (ii) the relative laying date (fig. 1). Al-
though the relative laying date and delay before laying met-
rics are related, they describe different, important aspects of
reproduction as well as testable components of the optimi-
zation model. Relative lay date specifically indicates the tim-
ing of reproduction, whereas the delay before laying indi-
cates the amount of time individuals require to gain in body
mass (i.e., fat stores) after migration, meet the minimum
body mass threshold required to initiate reproduction, grow
follicles, and ultimately begin laying their clutch. Based on
Rowe et al.’s (1994) condition-dependent individual optimi-
zation model, two potential predictions of the way in which
variation in energetic physiology could influence the opti-
mization of breeding phenology decisions can bemade, after
controlling for the known influence of arrival date and body
condition (i.e., body mass). First, individuals with overall
higher physiological fattening rates (plasma TRIG) and high
signals of energetic demand (high CORT to induce forag-
ing) could result in higher rates of condition gain and there-
fore earlier breeding phenology (a shorter delay prior to lay-
ing and earlier relative laying dates). Alternatively, given
that individuals must balance the benefits and costs of ele-
vated baseline GCs carefully (Love et al. 2014; Crossin et al.
2015), one could also predict that individuals able to man-
age their energetic physiology more efficiently (i.e., the abil-
ity to maximize physiological fattening while minimizing el-
evations of baseline CORT) may in fact exhibit the earliest
breeding phenology.
Material and Methods

Study Site and General Field Methods

Our study site is located in the East Bay Migratory Bird
Sanctuary on Mitivik Island, Nunavut, Canada (647020N,
817470W), and is Canada’s largest colony of Arctic-nesting
common eiders (up to 9,000 pairs annually). Females win-
ter along the coast of Newfoundland and Labrador or off
the western coast of Greenland (Mosbech et al. 2006), ini-
tiate spring migration in mid-May, arrive on the breeding
grounds in mid-June, and initiate laying in late June and
early July (Love et al. 2010; Hennin et al. 2015). From 2006
to 2013, we captured prerecruiting females (N p 366) op-
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portunistically using flight nets early in the season during
mid-June to early July as they visited the colony. Since we
targeted the timing of capture to coincide with the timing
of arrival on the breeding grounds (Love et al. 2010), we used
individual capture date as a useful proxy for their timing of
arrival at the colony (Descamps et al. 2011; see “Discus-
sion”).
Within 3min of a female flying into the flight net, a blood

sample was taken from the tarsal vein using a 1-mL hepa-
rinized syringe and 23-g thin-wall, 0.5-inch needle to obtain
baseline physiology (Wingfield et al. 1982; Schoech et al.
1999; Romero and Reed 2005). Across all years, blood sam-
ples were collected at all times of day. Although baseline
CORT and TRIG have been shown to exhibit diel variation
in secretion in temperate-breeding species (e.g., Dallman
et al. 1993; Jenni and Jenni-Eiermann 1996), Arctic common
eiders at our study site do not exhibit these diel trends dur-
ing the breeding season (Steenweg et al. 2015), allowing us to
include all collected blood samples in analyses. Blood sam-
ples were transferred to a heparinized collecting tube and
centrifuged for 10 min at 10,000 rpm, and the separated
plasma and red blood cells were stored at2207C in the field
(2807C in the lab) until further analysis. After sampling,
bodymass (in grams) was collected, and females were banded
and given a unique combination of plastic, colored nasal tags
for future identification. Nasal tags were attached with an ul-
traviolet degradable monofilament to ensure that the tags
would fall off at the end of the breeding season, prior to fall
migration. Although wing-bar measurements have been used
to assign age to hens in other species and populations (e.g.,
Carney 1992), this technique is unreliable for hens nesting at
Mitivik Island (H. G. Gilchrist, unpublished manuscript),
and as such, we were unable to accurately assign age to our
hens.
Breeding activities of the individuals within our eider col-

ony are monitored yearly using spotting scope–based ob-
servations from seven permanent blinds. Behavioral obser-
vations of hens (e.g., nest searching, laying, incubating)
were collectedusing consistent protocols and trained observ-
ers. Using these observation techniques, the nests of nasal-
tagged hens were monitored twice daily to collect accurate
laying dates (transformed into relative laying dates; individ-
ual Julian lay date relative to the median laying date of the
colony that year; Lepage et al. 2000), which allowed for the
calculation of the delay before laying (number of days be-
tween arrival and laying dates).
Physiological Assays

Plasma triglycerides (TRIG) were measured using a com-
mercially available kit (Sigma-Aldrich, Oakville, Ontario,
Canada;Williams et al. 1999) optimized for use in prebreed-
ing common eiders (Hennin et al. 2015). Following dilu-
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tion, samples were added to 96-well microplates with re-
agent A to measure free glycerol, followed by reagent B to
measure total glycerol. After the addition of each reagent,
the plates were shaken for 10 min at 377C and then read us-
ing a plate reader at 540 nm. The amount of triglycerides
(mmol L21) in the plasma was calculated by subtracting the
amount of free glycerol (first read) from the amount of total
glycerol (second read). Each plate was run with a com-
mercially available internal plasma control (Sigma-Aldrich)
and a serially diluted standard curve of glycerol standard
(2.54 mmol L21). Inter- and intra-assay coefficients of vari-
ation were 11.27% and 4.42% for total TRIG and 5.51% and
6.29% for free glycerol, respectively.

Baseline plasma corticosterone (CORT)wasmeasured us-
ing a commercially available, previously validated enzyme im-
munoassay kit based on competitive binding (EIA; Assay
Designs/Enzo Scientific, Ann Arbor, MI) and optimized for
common eiders (Hennin et al. 2015). Samples were run un-
extracted and in triplicate at a 1∶20 dilution with 1.5% ste-
roid displacement buffer. Each assay plate was run with a
standard curve by serially diluting a 200,000-pg mL21, kit-
provided corticosterone standard and a corticosterone-spiked
control sample and read at 405 nm using a plate reader
(for details, see Hennin et al. 2015). The inter- and intra-
assay coefficients of variation across all plates were 8.54%
and 5.87%, respectively.
Statistical Analyses

Analyses for the delay before laying and relative laying date
were restricted to include only prerecruiting females. Fe-
males were classified as prerecruiting if they were caught
8 days or longer before laying, since these birds would not
yet have begun rapidly growing follicles (Alisauskas andAnk-
ney 1992; Hennin et al. 2015). Birds caught within 7 days of
laying have already committed to follicle growth (i.e., invest-
ment in eggs; Hennin et al. 2015) and instead would be cat-
egorized to the rapid follicle growth stage. In instances
where females were recaptured in different years (only 32
in over 350 birds included in our study), we included only
the first instance of her capture in which we were able to as-
say baseline CORT and TRIG. All subsequent captures were
excluded to prevent statistical bias.

We tested the effect of four (independent) covariates us-
ing generalized linear mixed models: female body mass at
arrival; relative arrival date (the date the individual arrived
relative to the colony median arrival date for that year);
mass-corrected TRIG, which is an index of physiological
fattening rate (Williams et al. 1999); and baseline CORT
(log transformed) on delay before the laying and relative
laying date of individuals. Since the relationship between
fattening rate and baseline CORT may vary depending on
current energetics and breeding stage (Hennin et al. 2015),
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we also examined the potential for an interaction between
fattening rate and baseline CORT in our analyses. Due to
the inclusion ofmass-corrected TRIG in our analyses to rep-
resent fattening rate, we did not include interactions be-
tween body mass and energetic physiology. Finally, we in-
cluded year as a random factor in all analyses to account
for annual variation in reproductive decisions and physiol-
ogy, in addition to other extrinsic factors. Our analyses were
conducted in R (R Development Core Team 2014) using the
unrestricted maximum likelihoodmethod of the lme4 pack-
age (Bates et al. 2012). We then used the corrected Akaike
information criterion (AICc) and Akaike weights to select
the most parsimonious model for each independent vari-
able. The model with the lowest AICc value was considered
to be the most parsimonious, andmodels found to be within
twoDAICc units were considered competing models (Burn-
ham and Anderson 2002). Finally, we used model averaging
(multimodel inference) to estimate parameters, as it reduces
bias and increases precision (Burnham andAnderson 2002).
All values are presented as mean 5 SEM unless otherwise
stated.
Results

For the delay before laying, body mass was present in all
competing models, with the interaction between fattening
rate and baseline CORT being present in the top two mod-
els (table 1). Females with heavier body mass at arrival and
those with higher fattening rates combined with lower lev-
els of baseline CORT had the shortest delays before laying
(table 2; fig. 2a, 2b). Year as a random factor explained
4.48% of the overall variance. For relative laying date, both
body mass and relative arrival date were present in all com-
peting models, and the interaction between baseline CORT
and fattening rate was present in the top model (table 1).
According to the parameter estimates, individuals with a
heavier body mass at arrival laid earlier, and those with
higher fattening rates combined with lower levels of base-
line CORT had the earliest laying dates (table 2; fig. 2c,
2d). Year as a random factor explained 18.4% of the overall
variance.
Discussion

We examined a highly relevant but previously untested com-
ponent of Rowe et al.’s (1994) condition-dependent individ-
ual optimizationmodel—the impact of individual variability
in the rateof gain inconditionmediated throughenergeticman-
agement on breeding phenology.We predicted that after con-
trolling for the known influences of arrival date and body
mass, including information on prebreeding energetic man-
agement (physiological fattening and baseline levels of plasma
CORT) would enhance our ability to predict reproductive
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phenologyparameters associatedwith the condition-dependent
individual optimization model. We predicted that the earli-
est laying dates and shortest delays before laying (earliest
breeding phenology) would result from higher physiological
fattening rates coupled to either higher or lower baseline
CORT, the former prediction being related to the known role
of elevated baseline CORT inmediating foraging and the lat-
ter being related to individual efficiency in optimizing the
cost-benefit ratio of elevated baseline CORT levels.We found
support for the second prediction: female common eiders
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with higher fattening rates and lower baseline CORT (higher
energetic physiology efficiency) had the earliest breeding
phenology. As such, being able to fatten at a high rate (high
TRIG) in preparation for reproduction in response to low
signals of energetic demand (low baseline CORT; i.e., higher
efficiency) appears to provide the optimal physiological phe-
notype that maximizes investment in reproduction with re-
gard to reproductive phenology. Nonetheless, females un-
able to maintain high physiological fattening rates appear
to be able to achieve moderately earlier breeding phenology
Table 1: Results of model selection on the delay before laying and the relative laying date of
prerecruiting female common eiders breeding at Mitivik Island
Log likelihood
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Delay before laying:

Mass 1 Arrival 1 CORT # FatRate
 2511.23
 8
 .00a
 .23*
Mass 1 CORT # FatRate
 2512.39
 7
 .15
 .21*
Mass
 2516.16
 4
 1.28
 .12*
Mass 1 Arrival
 2515.25
 5
 1.56
 .10*
Mass 1 FatRate
 2515.46
 5
 1.99
 .08*
Mass 1 Arrival 1 FatRate
 2514.58
 6
 2.37
 .07

Mass 1 CORT
 2515.94
 5
 2.96
 .05

Mass 1 Arrival 1 CORT
 2515.09
 6
 3.38
 .04

Mass 1 Arrival 1 CORT 1 FatRate
 2514.40
 7
 4.17
 .03

CORT # FatRate
 2518.82
 6
 10.84
 .00

Arrival 1 CORT # FatRate
 2517.98
 7
 11.32
 .00

Null
 2523.89
 3
 14.66
 .00

CORT
 2523.01
 4
 14.99
 .00

FatRate
 2523.89
 4
 15.32
 .00

Arrival
 2523.32
 4
 15.60
 .00

Arrival 1 FatRate
 2522.64
 5
 16.35
 .00
Relative lay date:

Mass 1 Arrival 1 CORT # FatRate
 2516.93
 8
 .00b
 .26*
Mass 1 Arrival
 2520.22
 5
 .12
 .25*
Mass 1 Arrival 1 FatRate
 2519.28
 6
 .36
 .22*
Mass 1 Arrival 1 CORT
 2520.21
 6
 2.22
 .09

Mass 1 Arrival 1 CORT 1 FatRate
 2519.27
 7
 2.50
 .07

Arrival 1 CORT # FatRate
 2525.31
 7
 14.57
 .00

Arrival
 2529.29
 4
 16.15
 .00

Arrival 1 FatRate
 2528.42
 5
 16.51
 .00

Mass 1 CORT # FatRate
 2555.81
 7
 75.57
 .00

Mass
 2559.23
 4
 76.01
 .00

Mass 1 FatRate
 2558.71
 5
 77.10
 .00

Mass 1 CORT
 2558.97
 5
 77.60
 .00

CORT # FatRate
 2562.99
 6
 87.78
 .00

Null
 2566.74
 3
 88.95
 .00

FatRate
 2566.23
 4
 90.03
 .00

CORT
 2566.74
 4
 91.04
 .00
Note: Log likelihood, number of parameters (k), change in corrected Akaike information criterion (DAICc),
and AICc weight (wi) are provided for each competing model. Independent variables in the models include body
mass at capture (Mass), relative arrival date (Arrival), baseline corticosterone values (CORT), and mass-corrected
triglyceride values representing fattening rate (FatRate). Year was included as a random factor. A model with an
interaction also included corresponding parameters. Competing models (!2.0 DAICc) display wi values with an
asterisk.

a AICc p 1,039.25.
b AICc p 1,050.66.
.edu/t-and-c).
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by compensating with higher baseline CORT, which could
drive increases in absolute foraging rates (see “Introduc-
tion”; fig. 2). Regardless of the interaction with baseline
CORT, and as predicted by Rowe et al.’s (1994) condition-
dependent individual optimization model (fig. 1), lower fat-
tening rates (low TRIG) consistently resulted in the longer
delays before laying and the latest relative laying dates. It
therefore appears that variation in the timing of arrival and
arrival body mass can be fine-tuned by individually opti-
mized strategies for acquiring resources on the breeding
grounds and hence driving the accrual of endogenous fat
stores in preparation for reproduction.
A Novel Test of the Individual Optimization Model

Previous empirical work testing predictions of Rowe’s
condition-dependent individual optimization model have
focused on the impacts of arrival condition (measured only
as body mass) and arrival date on breeding phenology. Both
correlative and manipulative studies in free-living species
have confirmed that individuals arriving with heavier body
mass, or those arriving at an earlier date, or a combination
of both, can initiate breeding the earliest (Bêty et al. 2003;
Descamps et al. 2011). Given a number of logistical con-
straints of working in free-living systems, a key additional
prediction that a faster gain in condition should positively
influence the timing of breeding (breeding phenology) re-
mained largely untested in the wild.While food supplemen-
tation studies can influence fattening rates and reveal some
of the relationships between individual body mass, repro-
ductive timing, and reproductive investment (Schoech et al.
2009; Ruffino et al. 2014), other parameters such as territory
quality and competition can be influenced simultaneously,
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often making results difficult to interpret (Williams 2012).
By employing highly relevantmetrics of energetic physiology,
we confirmed this long-held prediction of Rowe’s model; af-
ter controlling for arrival date and body mass, females with
higher instantaneous physiological fattening (i.e., greater
rate of condition gain and slope; higher plasma TRIG/phys-
iological fattening rate), regardless of their energetic demand
(baseline CORT), had a shorter delay before laying as well as
an earlier relative laying date (fig. 1, scenario A or C). These
results have important implications for how life-history in-
vestment decisions evolve. At the simplest level, our results
suggest that certain physiological or behavioral phenotypes
may enable individuals to gain condition quickly on the
breeding grounds following arrival from migration. Alter-
natively, individual females may have differing degrees of
physiological or behavioral flexibility, enabling them to ad-
just their foraging behavior (the rate at which they forage,
the locations that they forage within, or both; e.g., Bond
and Esler 2006) based on a combination of intrinsic and ex-
trinsic conditions to optimally adjust their breeding phenol-
ogy independently of their arrival date and condition. For
instance, in a food supplementation study of Florida scrub
jays (Aphelocoma coerulescens; Schoech et al. 2009), baseline
CORT was more tightly related to the timing of breeding in
bad compared to good years. However, it is important to
note that this species is cooperative and an income breeder
and therefore under very different energetic demands than
eiders. Moreover, the study was not able to measure the rate
of gain in body mass or fat stores, verifying it as a driver of
laying date. As such, to test for differences between the two
potential mechanisms, physiological manipulations in free-
living individuals will be necessary. Although an important
output of Rowe’s model, we were currently unable to test
Table 2: Summary of model-averaged parameter estimates and unconditional standard errors
for parameters included in the delay before laying and relative laying date analyses
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Arrival
 2.10
 .07
 2.24
 .04

Mass
 25.12
 1.33
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 22.50

CORT
 2.11
 .25
 2.60
 .38
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 2.05
 .04
 2.14
 .04

CORT # FatRate
 .09
 .04
 .02
 .16
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Intercept
 18.58
 2.93
 12.80
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 .08
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the impact of variation in the rate of condition gain on re-
productive investment (i.e., clutch size) due to the difficulty
of acquiring accurate estimates of clutch size for most
females nesting at our study site within the current 8-year
data set (2006–2013). However, the links between prebreed-
ing bodymass, arrival date, and seasonal decline in clutch size
have already been demonstrated in mixed-strategy Arctic-
breeding species including common eiders (Bêty et al. 2003;
Descamps et al. 2011).What remains to be examined iswhether
higher fattening rates per se during prebreeding and optimi-
zation of energetic management result in larger clutch sizes,
as predicted by Rowe et al. (1994).
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Influence of Energetic Physiology on the
Optimal Timing of Reproduction

We found that the impact of a high fattening rate on both
the delay before laying and the laying date was dependent
on an individual’s ability to manage its energetics (i.e., base-
line CORT levels). There may be two potential ways in
which these physiologically mediated effects on laying deci-
sions could arise, both operating through differences in in-
dividually optimized breeding strategies across females (with
associated downstream costs and benefits). First, it is well
known that the energetic physiology of long-lived vertebrates
Figure 2: Interaction between the baseline corticosterone (CORT; log transformed) and the fattening rate (residuals between plasma
triglycerides [TRIG] and body mass) on the delay before laying (a, b) and the relative lay date (c, d). The interactions are illustrated with
3D (a, c) and 2D (b, d) graphs, with the grids in the 3D plots and the contour plots both representing the same model-corrected values
(corrected for relative arrival date and body mass). The dots in the 3D plots represent the raw values to compare to the model-corrected
values (grids). The 2D contour plots represent the distribution of the delay before laying or the relative lay date (each color represents
0.5 days) in relation to the baseline CORT and the fattening rate.
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changes over the life span of an individual (Monclús et al.
2011; Elliott et al. 2014). Age-related changes in baseline
CORT (Heidinger et al. 2006; Monclús et al. 2011; Riechert
et al. 2012) and physiological sensitivity to the effects of
baseline CORT (Peiffer et al. 1991; Reul et al. 1991; Perlman
et al. 2007) have also been documented in a number of ver-
tebrate species. Consequently, age-related variation may di-
rectly shape the relationship between energetic physiologi-
cal traits and reproductive decisions (Heidinger et al. 2006;
Monclús et al. 2011; Riechert et al. 2012). We are currently
unable to reliably determine age in our study species; how-
ever, an ability to do so in the future or to work in a colony of
known-age birds would allow further testing of the impact
of age-related changes in the reproductive sensitivity to var-
iation in baseline CORT on investment decisions.

Second, independent of age-related effects on energetic
physiology, inherent individual variation in the secretion of
baseline CORT, behavioral (i.e., foraging) sensitivity to base-
line CORT (Angelier et al. 2007b; Crossin et al. 2012), the ac-
quisition and assimilation of energetic resources (Bond and
Esler 2006; Heath et al. 2010; Rigou and Guillemette 2010),
and the ability to optimally mitigate the costs of migration
(Crossin et al. 2010) could all work together to fine-tune gen-
eral optimal investment strategies (Williams 2008, 2012).
For example, those individuals able to maintain baseline
GCs at lower levels given similar life-history costs may have
the highest inherent quality, exhibiting greater energetic
physiological efficiency and therefore gaining higher fitness
benefits (Angelier et al. 2010). Alternatively, interindividual
variation in the ability tomanage energetic physiology under
varying environmental conditions (i.e., physiological flexibil-
ity) could result in different individual-based optimization
strategies within the same life-history stage (Angelier et al.
2007b; Schultner et al. 2013; Love et al. 2014). For example,
we found that while having high energetic physiology effi-
ciency (high physiological fattening rates and low baseline
CORT) may be optimal for an individual if it is achievable,
females may still be able to optimize laying decisions to a de-
gree via higher physiological fattening rates coupled with el-
evated baseline CORT, although this strategy would be pre-
dicted to come at a hypothesized cost given the impacts of
elevated GCs on oxidative damage (Constantini et al. 2011),
ultimately leading to reduced life spans (Bize et al. 2008).
Within this framework, it is possible that late-laying birds
with low fattening rates and low CORT may be adopting a
slower pace-of-life strategy, resulting in a lower intra-annual
probability of reproductive success and a potentially smaller
amount of within-season investment (i.e., smaller clutch sizes)
but benefiting from a longer life span (Comendant et al. 2003;
Lancaster et al. 2008; Descamps et al. 2011; Palacios et al.
2012). Alternatively, these individuals may simply be poorer
in quality, with lower energetic physiological efficiency, and
therefore may have more difficulty in recovering fromwinter-
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ing and migration, resulting in carry-over effects delaying
their subsequent reproductive attempt (Crossin et al. 2010).
While all biologically valid and relevant, these hypotheses
remain to be tested in free-living species since they necessi-
tate the difficulties of hormonally manipulating prebreeding
females and then consistently following short- and long-
term benefits or costs to reproduction or survival within fe-
males across multiple years. Captive studies involving the
prebreeding manipulations of baseline CORT would also
be helpful tominimize the impacts of external sources of var-
iation, potentially influencing the interaction between base-
line CORT and physiological fattening while still moving in-
dividuals outside of their optimal physiological phenotype
to examine underlying costs on a per-individual basis.
Conclusions and Future Research

The inclusion of energetic physiology, representing indi-
vidual variation in energetic management (plasma TRIG
and baseline CORT), during the prerecruiting period al-
lowed us to investigate a previously untested component
of the condition-dependent individual optimization model
first proposed by Rowe et al. (1994). Although the influence
of these physiological traits on reproductive decisions was
relatively complex, their inclusion enhanced the predictive
capacity of the model and improved our interpretation of
how variation in individual physiological phenotypes influ-
ences reproductive decisions that impact fitness. To deter-
mine whether these mechanisms have a causal effect on
breeding phenology and breeding investment and to exam-
ine whether variation in their physiological control mecha-
nisms drives investment trade-offs, future research should
aim to manipulate baseline CORT or plasma TRIG levels
within biologically relevant levels in free-living individuals
during the critical prebreeding stage (Crossin et al. 2015).
Being able to couple these metrics with measures of forag-
ing behavior (i.e., foraging rates and profitability) andmon-
itoring long-term success (i.e., survival) would greatly im-
prove our appreciation for how underlying mechanisms
enable individually optimized life-history strategies to evolve.
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