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ABSTRACT

Aim Current interest in forecasting changes to species ranges has resulted in a
multitude of approaches to species distribution models (SDMs). However, most
approaches include only a small subset of the available information, and many
ignore smaller-scale processes such as growth, fecundity and dispersal. Further-
more, different approaches often produce divergent predictions with no simple
method to reconcile them. Here, we present a flexible framework for integrating
models at multiple scales using hierarchical Bayesian methods.

Location Eastern North America (as an example).

Methods Our framework builds a metamodel that is constrained by the results of
multiple sub-models and provides probabilistic estimates of species presence. We
applied our approach to a simulated dataset to demonstrate the integration of a
correlative SDM with a theoretical model. In a second example, we built an inte-
grated model combining the results of a physiological model with presence–
absence data for sugar maple (Acer saccharum), an abundant tree native to eastern
North America.

Results For both examples, the integrated models successfully included informa-
tion from all data sources and substantially improved the characterization of uncer-
tainty. For the second example, the integrated model outperformed the source
models with respect to uncertainty when modelling the present range of the
species. When projecting into the future, the model provided a consensus view of
two models that differed substantially in their predictions. Uncertainty was reduced
where the models agreed and was greater where they diverged, providing a more
realistic view of the state of knowledge than either source model.

Main conclusions We conclude by discussing the potential applications of our
method and its accessibility to applied ecologists. In ideal cases, our framework can
be easily implemented using off-the-shelf software. The framework has wide poten-
tial for use in species distribution modelling and can drive better integration of
multi-source and multi-scale data into ecological decision-making.
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Climate change, decision making, patterns and processes, range dynamics,
scaling, spatial ecology, species distribution modelling, uncertainty.
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INTRODUCTION

Models of species range limits have wide applications, particu-

larly in conservation biology where they can be used as decision-

support tools in biodiversity management (Guisan et al., 2013).

Due to large temporal and spatial scales as well as the complex

and nonlinear nature of ecosystem dynamics, it is often impos-

sible to construct experiments that adequately explore the pro-

cesses generating species range limits (Wu & Loucks, 1995;

Levin, 1998). Hence, range models are essential tools that have

been applied to a large number of ecological subfields, including

biogeography (Schurr et al., 2012), invasion biology (Catterall

et al., 2012; Gallien et al., 2012), hybrid zone dynamics (Engler

et al., 2013) and the impacts of climate change on species dis-

tributions (Blois et al., 2013; Thuiller et al., 2014b).

Despite the recognized potential of these models, it can be

difficult to produce species distribution models (SDMs) with

acceptable levels of precision and bias (Guisan et al., 2013). For

mechanistic models, two important constraints can be prob-

lematic: (1) having the appropriate ecological theory needed to

link data to modelling objectives, and (2) having sufficient data

over a range of conditions to maintain coherence between the

spatial and temporal scales of data and theory. In recent

decades, however, modelling techniques have proliferated to

take advantage of the increased number of datasets available. A

growing body of theory, reflecting the diversity of processes

generating species ranges, has also contributed to model diver-

sification (Boulangeat et al., 2012). Of these model types, fine-

scale mechanistic models often capture important ecological

processes quite well, but may perform poorly when applied at

the scale of species ranges. For instance, biotic interactions are

usually not modelled mechanistically at regional or continental

scales because they are poorly known or unrecorded, despite

being considered a key determinant of range limits (Pigot &

Tobias, 2013). In contrast to mechanistic models, more correla-

tive approaches that statistically relate species occurrences to

other variables have the advantage of indirectly accounting

for underlying processes (Guisan & Zimmermann, 2000).

However, their predictions rely on the stationarity of the

relationships between occurrences and explanatory variables in

time and space, implying that the selected variables are

related to the processes limiting species ranges and that

their correlations are constant for calibration and projection

ranges (Dormann, 2007). Extrapolating beyond the scope

of the original data (e.g. predicting ranges based on future

climate) is therefore problematic, because nonlinear responses

to novel combinations of explanatory variables cannot be

accommodated in models that do not simulate the underlying

processes.

Clearly, an approach is needed to unify the strength of differ-

ent modelling approaches that can also incorporate multiple

data sources. To this end, we present an application of hierar-

chical Bayesian methods that uses outputs from multiple models

to inform the results of the final model. Techniques for

multimodel inference have proliferated in recent years. For

example, hybrid models that allow for combinations between

mechanistic and phenomenological sub-models are commonly

employed in SDMs (Gallien et al., 2010; Thuiller et al., 2013;

Boulangeat et al., 2014). Within the hybrid framework, a cor-

relative model might be used to account for abiotic variables

that limit species distributions (Guisan & Thuiller, 2005), while

a more mechanistic approach could include biotic interactions

and space–time dynamics (Smolik et al., 2010). However, the

link between different sub-models is based on assumptions

about the scaling of ecological processes that are poorly known

and difficult to test (Gallien et al., 2010) and, as such, uncertain-

ties are approximated and difficult to attribute to different

sources. An alternative to hybrid models is the direct combina-

tion of predictions, allowing models operating at the same

spatio-temporal scales to be combined (e.g. model averaging,

ensemble forecasting; Araújo & New, 2007). However, because

uncertainty is approximated and may be poorly understood, it is

not possible to evaluate the effects of convergent predictions on

the total uncertainty of the outcomes, despite its potential

importance in a prediction context.

We propose an alternative to these approaches using a hier-

archical Bayesian framework. This approach provides a number

of advantages, including: (1) the ability to incorporate multiple

modes of inference (e.g. mechanistic, correlative models) (Van

Oijen et al., 2005; Clark & Gelfand, 2006; Hobbs & Ogle, 2011;

Hartig et al., 2012), (2) an easy mechanism to include multiple

data sources at various scales (Levin, 1992; Peters et al., 2004),

and (3) an intuitive and comprehensive reporting of uncertainty

in model predictions that reflects variation at all levels of

organization (Cressie et al., 2009; Hobbs & Ogle, 2011). Unlike

hybrid methods, the aim is not to link different sub-models into

a single model, but to condition the predictions of a metamodel

at the target scale (e.g. an entire species’ range) with information

from independent sub-models at a variety of spatial scales,

allowing for more flexibility regarding the type of information

included. By integrating all available knowledge into a single

prediction, our approach potentially mitigates the limitations

inherent in each individual model, contributing to more robust

predictions (Guisan & Thuiller, 2005; Araújo & Guisan, 2006).

Moreover, a more comprehensive understanding of uncertainty

can guide biodiversity management and prioritize future data

collection by identifying parameters that make the greatest con-

tribution to variance in the model predictions (McMahon et al.,

2011).

We illustrate our framework with two examples. We begin

with a hypothetical example using simulated data, where we

define the framework and demonstrate its application to multi-

ple sources of information from different scales. In a second

example, we apply the framework to combine presence–

absence information with phenological data to improve uncer-

tainty estimates and reduce bias when predicting changes to the

range of sugar maple (Acer saccharum Marsh.), a widespread

and dominant tree species from eastern North America, in

response to climate change. We provide a more formal math-

ematical presentation in Appendix S1 in the Supporting Infor-

mation, along with complete code and data for both examples

in Appendix S2.

Integrated models of species ranges
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Example 1: adding experimental evidence for the
fundamental niche to an SDM

The key idea of our approach is to formulate a metamodel that

integrates data at the same ecological scale as the desired pre-

dictions, and to constrain the parameters of this model using the

output of one or more sub-models. In this hypothetical

example, we build a metamodel relating the distribution of an

annual plant to coarse-scale climate with complementary infor-

mation originating from a fine-scale experiment manipulating

the precipitation regime. The metamodel attempts to capture

the realized distribution of a species; as a correlative model, it

implicitly captures the major physiological constraints and eco-

logical processes constraining the distribution of the target

species. However, for the purposes of forecasting, we would like

to disentangle the fundamental response of a species to environ-

mental variation from other processes in order to map the cli-

matic envelope of where a species may be found in a natural

setting. Thus, we use additional information on the physiologi-

cal constraints affecting species distribution. Because these data

are often collected at a finer scale than that the rangewide occur-

rence data, we apply a simple scaling function, drawing on eco-

logical theory, to compute the likelihood of a set of metamodel

parameters given both the occurrence and the physiological

data. (See Appendix S1 for procedural details and scripts for

executing the model.)

We consider data collected from a species’ historical distribu-

tion, where the goal is to predict the distribution following a

substantial reduction in precipitation. For the metamodel-scale

data, we simulate a relatively high-quality presence–absence

dataset covering a variety of ecological conditions, which we

term XM, where the subscript M indicates that the data were

collected at the same scale as the metamodel (Fig. 1). We desire

to model the species’ distribution as a function of temperature,

TM, and precipitation, PM. An initial version of the metamodel

(θM) that has no constraints from other datasets will be referred

to as the naive model. This naive model uses a simple logistic

regression to estimate the probability of occurrence (ψN) as a

function of temperature and precipitation:

ψ θ
θ

θ

N f T P

p X T P

D

= ( )
= =( )
= ( )−

M M M

M M M M

M Mlogit

, ,

, ,1
1

(1)

where θM is the parameter vector of the model, DM is the

covariate matrix (i.e. TM, PM), and logit−1 is the inverse of the

logit function. We estimate parameters using a Metropolis-

Hastings algorithm within a Markov chain Monte Carlo

(MCMC) scheme using the proportional form of the Bayes

theorem:

p X T P p X T P pθ θ θM M M M M M M M M, , , ,( ) ∝ ( ) ( ) (2)

where p(XM | θM, TM, PM) is often referred to as the likelihood

of the data (XM) given the model (θM), p(θM) is often referred to

as the prior distribution of θM, and the goal of modelling is to

estimate p(θM | XM, TM, PM), the posterior distribution of θM,

which gives the probability that θM takes particular values, given

the observed data.

Thus far, we have considered only a single source of informa-

tion to fit this model, and therefore the prior distribution p(θM)

from equation 2 is uninformative. As a secondary source of

information, we will consider an experiment relating the popu-

lation growth rate of the plant to manipulations to the precipi-

tation regime, with results (but no raw data) available from the

literature (Fig. 1b). Furthermore, no information is available

regarding the temperature regime for the experiment. Trans-

plant experiments that evaluate performance beyond the range

of a species are common and represent a plausible scenario for

model integration (Hargreaves et al., 2014). According to niche

theory (Holt, 2009), the fundamental niche corresponds to the

set of environmental conditions where the per capita intrinsic

growth rate r is positive. This concept gives us a reasonable

model to fit a scaling function for our sub-model (Appendix

S1). If we hypothesize that the errors from Fig. 1b are normally
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(b) Hypothetical experimental results

Figure 1 Two simulated datasets used to illustrate the model integration framework. (a) Presences (circles) or absences (crosses) of the
species in ecological space, where the range of precipitation values sampled was 0.1–1. (b) Growth rate (r) as a function of manipulations
to the precipitation regime (whiskers show ± 1 SE), with a larger range for precipitation (i.e. −1.0 to 1.0). The dashed line shows the
threshold above which the species net growth rate is positive (implying presence). Axis scales for temperature and precipitation are
arbitrary, but note the different scales on the horizontal axes.

M. V. Talluto et al.
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with standard deviation σs (where the subscript S indicates

information pertaining to the sub-model), then for an observa-

tion i we can interpret the probability of presence (ψS,i) as the

probability that the observed growth rate XS,i is positive:

ψ σS S S, , ,
0

= ,i i iN X( )
∞

∫ (3)

where N is the normal density function. We can then estimate

the posterior distribution for the sub-model by fitting the rela-

tionship between ψS and precipitation (PS) using Bayesian beta

regression (Ferrari & Cribari-Neto, 2004):

p P p P pθ ψ ψ θ θS S S S S S S, ,( ) ∝ ( ) ( ). (4)

Although the two datasets were collected at considerably differ-

ent scales, we have sub-model predictions arising from a fine-

scale experiment that are relevant at the scale of the metamodel

(i.e. the probability of presence at a given precipitation regime).

The scaling treats the fundamental niche as the only driver of

species distribution, and only considers a single dimension of

the niche. As such, it would be unwise to expect predictions from

this model alone to resemble the actual distribution of the

species; as a mechanistic model, it is simply too incomplete to

predict distribution. However, the information from this sub-

model, when applied as a constraint on the metamodel, can

result in improved predictions that incorporate the information

within each model.

We accomplish model integration by treating ψS, the pos-

terior predictions of the sub-model θS, as prior information

about some of the parameters of θM (i.e. parameters related to

precipitation), expanding equation 2 to incorporate the new

information from the sub-model:

p X T P( , , , , )θ θ ψM M M M S S

integrated posterior� ��������� ���������

∝∝ ( )p P p Xψ θ θS M M
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M M, ,
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posterior
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prior for
sub-model

( )
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.

(5)

As before, the metamodel θM can be used to predict probability

of occurrence (ψI; where the subscript I refers to the integrated

model). However, these predictions now reflect the presence–

absence data XM as well as the information from θS, including all

of the data sources used to produce this sub-model. Finally, we

note the presence of marginal distributions for both models [i.e.

p(θM) and p(θS)]. These can be informative (e.g. incorporating

further prior information or the predictions of additional sub-

models), semi-informative (e.g. to provide greater weight to

more informative models) or uninformative. For the purposes

of this example, we applied prior weights of 1 and 0.05 to the

correlative and mechanistic models, respectively, reflecting the

increased generality and much larger sample size of the correla-

tive data. This procedure has the effect of increasing the variance

of the model and prevents biasing the parameter estimation in

favour of the mechanistic model.

When comparing the three models (naive metamodel,

mechanistic sub-model and integrated metamodel) we observed

extreme uncertainty in the first model when projecting beyond

the range of the original data (Figs 2a & 3a, b). The sub-model

was highly precise with respect to precipitation, thus providing a

fairly strong constraint when producing the integrated model

(Fig. 2b). The result was an integrated prediction that reflected

the shapes of both models and showed considerably reduced

uncertainty (Fig. 2). At the scale of the metamodel, considering

both temperature and precipitation, we observed similar results,

with reduced uncertainty in the predictions over the domain not

covered by the presence–absence data (Fig. 3).

Example 2: constraining a SDM using phenological
information

For the second example, we consider the problem of forecasting

a species’ potential distribution following climate change. There

is considerable interest in comparing correlative and mechanis-

tic projections with respect to climate change (Morin & Thuiller,

2009), and the correct characterization of uncertainty is a criti-

cal aspect of this problem (Cheaib et al., 2012). Despite being a

relatively common application of SDMs (Guisan & Thuiller,

2005), projecting models parameterized with modern climate

data to future climate scenarios remains problematic (Araújo &
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Figure 2 Comparison of the naive model, mechanistic sub-model and the integrated model showing the probability of presence (ψ) as a
function of precipitation. Uncertainty is represented as dashed lines, showing the limits of 90% Bayesian credible intervals. The shaded
region shows the calibration range for the naive model. (a) Naive model, using only presence–absence data. Uncertainty increases
dramatically when attempting to project beyond the scope of the source data. (b) Mechanistic model, using observations of an experiment
to infer probability of presence. (c) Integrated model, showing predictions that are intermediate between the two sub-models and
uncertainty that is reduced compared with (a).

Integrated models of species ranges
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Guisan, 2006). We used our framework to constrain a climate-

based SDM with information obtained from Phenofit, a mecha-

nistic model that predicts a species’ probability of presence as a

function of the suitability of the environment given the species’

phenology (Chuine & Beaubien, 2001; Morin & Thuiller, 2009).

Here we describe briefly the dataset and methods and the

results of the analysis (see Appendix S1 for details of implemen-

tation and Appendix S2 for data and scripts to reproduce the

analysis).

We obtained climate variables, occurrence data and Phenofit

projections at 0.5° resolution for both the present and for 2100

for sugar maple, an economically and ecologically important

species occurring in eastern North America (Morin & Thuiller,

2009). These data defined the metamodel scale. To these data, we

added 4903 recorded presences and 21,701 absences derived

from permanent forest sample plots located in the United States

and Canada (see Appendix S1 for a map of plot locations). We

reserved a third of this dataset for evaluation and used the

remaining records to calibrate the models. We constructed the

naive model by using a binomial generalized linear model

(GLM) to relate the presence–absence dataset to three climate

variables: the number of degree days (ddeg), mean annual pre-

cipitation (an_prcp) and the ratio of annual precipitation to

potential evapotranspiration (pToPET). These variables were

selected from an initial set of seven variables (see Appendix S1

and Morin & Thuiller, 2009, for details on the climate variables).

We selected a GLM for its simplicity and interpretability because

our focus was on demonstrating the framework, but more

complex methods (e.g. generalized additive models) are com-

patible with the framework.

To perform the integration, we constrained the estimates of

the naive model with the additional information from Phenofit

while considering two different modelling objectives. The first is

improving our model of the present range of the species. The

use of both datasets to develop a range model for the species has

a number of advantages. Assuming we have chosen climate vari-

ables that well represent the constraints on the species, including

Phenofit in our model is likely to reduce bias in our estimate of

the fundamental niche. The posterior predictions of the model

(that is, the probability of presence in geographic space) will

incorporate uncertainty from all sources. This can provide a

much more accurate estimate of the uncertainty of our predic-

tions. Thus, for our first integration we combined the naive

model with the Phenofit predictions for the present; we refer to

this model as ‘Integrated-Present’. We also evaluated this model

by constructing calibration curves and by computing the area

under the receiver operating curve (AUC; see Appendix S1),

which evaluates classification ability with 1 indicating perfect

classification and 0.5 indicating no difference from a random

model (Swets, 1988). The second modelling goal is to project

changes to the range of sugar maple following climate change.

Process-based and correlative models often differ substantially

when projecting beyond the range of the original data (see

Example 1). Thus, we used the predictions for 2100 from

Phenofit (Morin & Thuiller, 2009) to condition the metamodel

given the naive model predictions under future climate.

Figure 3 Maps showing the predicted
probability of presence (ψ; a and c) and
the standard deviation of ψ (b and d) for
the naive and integrated models.
Historical (i.e. where presence–absence
samples were available) and predicted
future precipitation regimes are shown
below the horizontal axes.

M. V. Talluto et al.
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This procedure provided a consensus view of the future range of

the species; we refer to this model as ‘Integrated-Future’. In both

cases, it was necessary to scale the Phenofit predictions, which

were probabilistic, to make them compatible with the naive

model, which was fitted using occurrence data. We used a latent

variable approach, which posits an unobserved ‘true’ presence–

absence dataset from which the Phenofit probabilities are

derived. Similar to any other unknown parameter, we can gen-

erate a posterior distribution of this dataset by drawing samples

during the MCMC procedure; thus, at each iteration, a dataset

similar to the one used for the naive model was generated using

the Phenofit probabilities (see Appendix S1 for a full statistical

presentation of the model). This procedure expresses the infor-

mation from Phenofit in a way that is compatible

with the naive model, and also propagates the uncertainty in

the Phenofit predictions. Additionally, it becomes possible to

address future distribution via simulated future occurrences

(which, by nature, are unobservable).

Model integration resulted in substantial reduction in pos-

terior uncertainty in the parameters, and, for the Integrated-

Future model, a large revision in the estimate of the response of

sugar maple to temperature (i.e. the variable ddeg) (Table 1,

Fig. 4). When projecting beyond the calibration range for the

naive model, the greater coverage provided by the integrated

model produced substantial reductions in uncertainty (Fig. 4).

When considering the present species distribution, the naive

and Integrated-Present models made very similar predictions

(Fig. 5). Furthermore, both models performed well when evalu-

ated against reserved data, with median AUC values of 0.802 and

0.797 for the naive and integrated models, respectively (see

Appendix S1). The small difference between the models indicates

that both models adequately predict the probability of the pres-

ence of sugar maple. The major advantage to integration is the

improved understanding of uncertainty in the predictions, with

greater uncertainty in southern portions of the range (Fig. 5). It

is important to note that the naive model was the basis for the

integrated model; thus the increased uncertainty present in the

integrated model is not the result of a ‘worse’ model, but rather

should be viewed as a correction to overfitting in the naive model

that incorporates uncertainty arising from the processes included

in the metamodel. Phenofit predicts fitness based on how climate

affects phenological timings, frost injury, reproduction and sur-

vival (Chuine & Beaubien, 2001; Morin & Thuiller, 2009). Thus,

climatic factors that ultimately limit species distribution might

be quite different between the two source models, as illustrated by

the differences in the potential future distributions predicted by

Phenofit and the naive model.

The Integrated-Future model presents a different interpreta-

tion of the response of sugar maple to warmer temperatures.

The naive model predicted a substantial northward migration;

in other words, the expectation under the naive model is that the

present estimate of the realized niche (obtained using occur-

rence data) is an unbiased reflection of the fundamental niche.

Thus the species should track temperature northward as the

climate warms. The Integrated-Future model, in contrast, pre-

dicted substantially more tolerance to warmer temperatures,

reflecting similar predictions from Phenofit (Figs 4 & 6). This is

because Phenofit estimates different aspects of the realized

niche. Although both models predicted a northward range shift,

the change under Phenofit was limited to approximately 200 km

north of the present range limit of the species, compared with

more than 900 km for the naive model. Phenofit also predicted

little change in the southern range limit of the species, while the

naive model projected loss of the species over much of the

southern portion of the range (Fig. 6). The metamodel thus

presents a consensus view of the niche of the species with respect

to the macroclimatic variables included in the model (Fig. 5),

incorporating the present range of the species (using the occur-

rence data) and information from Phenofit on what conditions

will be tolerable in the future.

DISCUSSION

Comparison with other methods

The methods provided here expand upon the motivation of

hybrid models to develop more robust approaches to using eco-

Table 1 Parameter estimates and 95% credible intervals for the
naive model (i.e. a binomial GLM relating sugar maple
presence–absence data to climatic variables), and two integrated
models combining the naive model and either the present or
future predictions from the mechanistic model Phenofit. All
models were fitted on predictor variables standardized to
mean = 0 and unit variance, and all estimates are on the logit
scale. Climate variables included the number of degree days
(ddeg), mean annual precipitation (an_prcp) and the ratio of
annual precipitation to potential evapotranspiration (pToPET).
Area under the receiver operating curve (AUC) values measure
model classification ability, with values of 0.5 indicating no
improvement over random classification and 1 indicating perfect
classification.

Naive Integrated-Present Integrated-Future

intercept −0.886 −0.103 −1.037

(−1.12, −0.66) (−0.23, 0.026) (−1.16, −0.92)

ddeg 2.904 3.701 6.431

(2.34, 3.45) (3.37, 4.03) (6.07, 6.79)

ddeg2 −6.697 −6.216 −5.241

(−7.04, 6.35) (−6.43, −6.00) (−5.43, −5.05)

ddeg3 1.669 1.454 0.893

(1.52, 1.79) (1.37, 1.53) (0.85, 0.94)

an_prcp 0.358 0.612 1.412

(−0.26, 1.02) (0.28, 0.94) (1.11, 1.71)

an_prcp2 −0.571 −0.848 −0.975

(−0.76, −0.40) (−0.95, −0.75) (−1.06, −0.90)

pToPET 2.960 2.637 2.093

(2.29, 3.61) (2.28, 2.99) (1.70, 2.48)

pToPET2 −0.557 −0.093 0.0064

(−0.74, −0.37) (−0.15, −0.03) (−0.070, −0.073)

AUC 0.802 0.797

(0.78, 0.82) (0.78, 0.81) –*

*AUC is unavailable for the Integrated-Future model because independ-
ent validation data are not available for future predictions.
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logical models for prediction while overcoming some limita-

tions characteristic of other integrated approaches. In particular,

it is often difficult in a hybrid model to identify parameters that

can be used to connect different modelling frameworks and

produce a meaningful response (Thuiller et al., 2013). The dif-

ficulty of including information from experimental studies or

ecological processes at lower scales can be a possible drawback of

hybrid models (Smolik et al., 2010; Thuiller et al., 2014a). Bayes-

ian methods provide a natural framework for the incorporation

of multiple sources of information, making them an attractive

alternative to SDMs. Hierarchical models in particular have the

potential to capture many of the intricacies necessary for imple-

menting hybrid models (Latimer et al., 2006). Pagel & Schurr

(2012) developed a hybrid approach to species distributions via

a dynamic range model. Similar to our approach, their model

integrated demographic information, abundance and presence/

absence data within a hierarchical Bayesian framework to

predict species ranges. However, their approach explicitly links

the modelled processes to occurrences/abundances via a

detailed demographic model, requiring data that may not be

available for many species. In contrast, our approach allows for

the inclusion of less complete datasets because integration is

performed via the separate predictions of each model (following

the application of the scaling function where necessary).

Because the metamodel is expressed as a series of conditional

probabilities (see Appendix S1), this information can be easily

included if the probability of the metamodel can be expressed

mathematically. Furthermore, Bayesian methods produce pos-

terior distributions of parameters and predictions rather than

point estimates, allowing for a comprehensive understanding of

uncertainty. Finally, Bayesian methods inherently allow for feed-

backs or interactions between sub-models, which may be a more

realistic representation of ecological dynamics when many

factors may simultaneously influence the system.

Our approach is a logical extension of other Bayesian

approaches developed to deal with processes that occur at multi-

ple scales while using several models simultaneously. In particu-

lar, it has certain similarities with Bayesian model averaging and
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Figure 4 Response curves for each environmental variable for the three models. Predictions are broadly similar for the three models, with
an increase in the optimal temperature regime predicted by the Integrated-Future model (left panel). Integration reduced prediction
uncertainty for all three variables, particularly for domains outside the naive calibration range. Single-variable predictions were computed
with the other variables set to their medians. Uncertainty is represented by coloured/shaded regions showing 95% Bayesian credible
intervals. The grey shaded region shows the calibration range for the naive model.

Figure 5 Range predictions for present climate for Phenofit (a), the naive model (b), the Integrated-Present model (c) and the difference
between posterior prediction standard errors (SE) of the Integrated-Present and naive models (d; Integrated SE – Naive SE). Model
predictions were quite similar, with reduced uncertainty where the models were in strongest agreement, and increased uncertainty near the
range boundary where the models disagreed. For reference, the present range of the species is outlined in red (Little, 1971).
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Bayesian calibration of process-based models. Bayesian model

averaging aims to combine several alternative models that

operate at the same scale to obtain better predictions while

taking into account parameter uncertainties (Hoeting et al.,

1999). This is of particular interest in ecology, where the mecha-

nisms underlying complex phenomena are often unknown (e.g.

Link & Barker, 2006). Bayesian calibration of process-based

models focuses on uncertainty of the parameter values, in this

case the values of the parameters are calibrated by the model

output (Van Oijen et al., 2005; Hartig et al., 2012). In contrast

with these methods, our approach handles data and models

operating at different hierarchical scales and uses process-based

models to constrain the shape of the metamodel.

Advantages of model integration

Species distribution models are important tools that are increas-

ingly being used by land managers for science-based decision-

making (Guisan et al., 2013). However, the possibility that

diverse approaches will provide contrasting answers as a result

of different assumptions and methodologies can create confu-

sion and mistrust of the models, and some managers may be

discouraged from incorporating their results in management

plans. Integrated approaches have gained momentum in recent

years, with integrative science being featured as a central theme

for several science-based governmental organizations around

the world (e.g. Bernier et al., 2013). Incorporating information

from multiple sources, particularly with respect to uncertainty,

fosters a connection between scientifically generated knowledge

and policy, and is therefore an important tool for adaptive

management (Rehme et al., 2011, Fig. 7). Such approaches are

needed in designing management plans for vulnerable species

and ecosystems to avoid basing decisions on too-narrow subsets

of the available information (Dawson et al., 2011). However, the

successful use of approaches such as ours will always remain

dependent on an intimate understanding of the decision-

making process, emphasizing the importance of close collabo-

ration between modellers and practitioners at all stages of model

development (Guisan et al., 2013).

Model uncertainty is another key factor affecting applicability

of model outputs (Addison et al., 2013). One of the main

strengths of our approach is that it allows for a transparent

identification of uncertainties and how they propagate through

the models. Transparency in uncertainty can be considered as a

sort of sensitivity analysis, whereby the greatest sources of uncer-

tainty can be detected and further research directed accordingly

(e.g. Example 1, Adding experimental evidence for the funda-

mental niche to a species distribution model; Figs 1 & 2).The new

knowledge resulting from this research can then be readily incor-

porated into the metamodel and the model predictions updated

to account for the new information. The ease of incorporating

new knowledge to the modelling framework allows for a rapid

adjustment of the predictions and the incorporation of the most

recently available knowledge into management plans (Keith

et al., 2011). Furthermore, the use of linked sub-models allows

for clear specification of desired model outputs (via the specifi-

cation of the metamodel) while easily retaining important eco-

logical objectives (via specification of sub-models).Transparency

in the model-building process must be accompanied by a clearly

documented workflow. We suggest using the sub-models as a

natural proxy for specifying specific objectives, and using this as

the basis for developing workflows describing the process of

model integration to ensure reproducibility and applicability

(Fig. 7). Adaptive approaches such as the one presented here are

often highlighted as a pressing need in order to develop strategies

to promote ecosystems that are both feasible and resilient

(Seastedt et al., 2008).

In many cases, both the data and theory needed to apply our

approach already exist, and all that is needed is the development

of sub-models and their integration into a metamodel. For

example, climatic gradients may mediate competitive interac-

tions (Kunstler et al., 2011), which means that simple correlative

Figure 6 Range predictions for future climate for Phenofit (a), the naive model (b), the Integrated-Future model (c) and the difference
between posterior prediction standard errors (SE) of the Integrated-Future and naive models (d; Integrated SE – Naive SE). The
mechanistic sub-model Phenofit (a) predicted small shifts in the sugar maple range. In contrast, the naive model (b) projected a large
northward change in suitable habitat. Model integration (c) produced predictions that were intermediate between the two models.
Uncertainty decreased for the northern portion of the present range (red/black outline) where the models were in agreement, while it
increased in the southern portion of the range where the models were in strong disagreement.
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models that fail to account for competition may be wrong if the

climate–competition association changes in the future. In

North America, the US Forest Service maintains a long-term

Forest Inventory Analysis database that could be utilized to

parameterize a competition model. Such a model need not

explicitly predict occurrence limits; rather it could be integrated

with a larger-scale model to include information about compe-

tition in a distribution model. The phenological information

needed to parameterize the sub-model for Example 2 (Con-

straining a SDM using phenological information) is similarly

available for a wide range of species (Morin & Thuiller, 2009).

There are also a number of networks collecting high-quality

data with good temporal and spatial coverage [e.g. the National

Ecological Observatory Network (NEON) and Long-Term Eco-

logical Research sites (LTER)]. There is great potential for these

kinds of data to be used in fitting sub-models of the kind used in

Example 1. In other cases, efforts have already been made to

compare models qualitatively (Morin & Thuiller, 2009; Cheaib

et al., 2012). Our framework could be used post hoc on the

outputs of these models to quantify uncertainty resulting from

model disagreement.

Challenges

Although our approach is highly flexible and can be applied in a

number of situations, there are some challenges to successfully

using the framework. Data quality and availability can present a

significant constraint on the number and type of models that

can be implemented in our framework. One obstacle is a lack

of adequate and unbiased coverage of explanatory variables;

exploratory analyses can be a significant aid in understanding

how data coverage affects the resulting predictions (McKenney

et al., 2002). Integration can solve these issues to some extent by

using supplemental information (and conceptual advances) in

additional sub-models where coverage is weak (e.g. Example 1;

Figs 2 & 3). A strength of our approach is that it can be used

without the full suite of data that would be required to run a

fully mechanistic model. Given that the metamodel is correla-

tive, it can be effectively implemented with, for example, only

presence–absence data, or, in the case where true absences are

difficult to obtain, with presences and pseudo absences (pro-

vided sufficient care is used in interpreting the results of such a

model). Consequently, any additional mechanistic data that

become available will enhance predictions by constraining

outputs of the metamodel.

Determining the functions to use to express the likelihood of

the sub-models given the metamodel (i.e. equation 5) is a critical

point. The challenge is three-fold: (1) determining which spatial

and temporal scales (i.e. which processes), are to be considered;

(2) selecting how to build and scale the sub-models to be consist-

ent with the metamodels; and (3) understanding how error and

uncertainty propagate from the sub-models to the metamodel.

Although we argue that our proposed framework is able to easily

deal with different scales and that the Bayesian framework allows

for an efficient integration of uncertainty across all scales consid-

ered, the building of scaling functions is an object of investigation

on its own. It is likely that the modelling process may include

multiple functions operating at different scales when taking all

Figure 7 Sample workflow for applying the models presented in Example 1 in a management context. Critical steps include specifying the
metamodel, identifying additional sources of information to be used as constraints on the metamodel and using the integrated prediction
for decision-making. As additional information becomes available from monitoring the results of management, this information can be
incorporated in additional sub-models to further refine the metamodel.
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known processes and models into account. Indeed, if species

distributions are a function of, for example, population growth

rate (Guisan & Zimmermann, 2000), they will involve processes

at the individual (e.g. competition) or cellular (e.g. photosynthe-

sis) scales. Such very large differences in spatial scales would

require more sophisticated upscaling methods than the simple

functions we have used here. Our framework is still applicable

whatever the chosen upscaling approach and is able to propagate

uncertainties from sub-models to the metamodel. Indeed, if a

sub-model provides poor information (due, for example, to

cross-scale nonlinearities in the response to the environment),

the resulting metamodel predictions may be worse than the

pre-integration naive model. In general, we advise users of this

framework to carefully consider the scaling in their models with

respect to the biology of the organism studied, and to use prior

model weights to downweight the scaled models when there is

uncertainty about the applicability of a sub-model at the

metamodel scale. For instance, in Example 1 we applied a model

weight to decrease the influence of the mechanistic model on the

metamodel (while still retaining some information contained

therein), recognizing that such a simplistic model may not scale

well. Finally, as always when modelling ecological systems, we

urge humility in the interpretation of model results and suggest

the use of model evaluation and validation tools whenever pos-

sible.We provide additional discussion on the implementation of

model weights in Appendix S1.

The implementation of the model itself can present an obsta-

cle when model complexity increases. In many cases, off-the-

shelf software can adequately express the model likelihoods with

minimal programming, but more complicated models will

require the development of custom programs. Developing such

customized code requires careful model specification, under-

standing of applied Bayesian methods and, in some cases, exten-

sive programming. However, the flexibility of our approach and

its transparency with respect to the propagation of uncertainty

will often outweigh the implementation challenges.

Finally, this approach is not just a new methodological tool but

a framework for forecasting species distributions that is funda-

mentally designed to make the link between modellers and prac-

titioners while correctly estimating uncertainties and being

updatable with new data and theoretical advances. A scientific

approach such as that presented here is particularly adapted to

synthesize available information and provide robust species dis-

tribution forecasts based on information known to be the best

available scientific knowledge. It can incorporate large databases,

valuing the efforts of data collection, and include models based

on the latest theoretical advances, which is essential to decrease

errors due to model specification (Austin, 2007). In addition, it

provides practitioners and decision-makers with the best pos-

sible estimation of uncertainties, with direct applications to risk

assessment or to guide the choice when investigating new

research and accumulating new data. Finally, we argue that the

adaptability of our approach is particularly appropriate in a

world where collected data and theoretical knowledge are chang-

ing as quickly as climate, and conservation practices must be

adjusted accordingly.

Data accessibility

All data, as well as all code required to repeat the analyses,

have been uploaded as online supporting information in

Appendix S2.
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