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Abstract: The use of remote sensing for developing land cover maps in the Arctic has grown
considerably in the last two decades, especially for monitoring the effects of climate change. The
main challenge is to link information extracted from satellite imagery to ground covers due to the
fine-scale spatial heterogeneity of Arctic ecosystems. There is currently no commonly accepted
methodological scheme for high-latitude land cover mapping, but the use of remote sensing in Arctic
ecosystem mapping would benefit from a coordinated sharing of lessons learned and best practices.
Here, we aimed to produce a highly accurate land cover map of the surroundings of the Canadian
Forces Station Alert, a polar desert on the northeastern tip of Ellesmere Island (Nunavut, Canada)
by testing different predictors and classifiers. To account for the effect of the bare soil background
and water limitations that are omnipresent at these latitudes, we included as predictors soil-adjusted
vegetation indices and several hydrological predictors related to waterbodies and snowbanks. We
compared the results obtained from an ensemble classifier based on a majority voting algorithm to
eight commonly used classifiers. The distance to the nearest snowbank and soil-adjusted indices were
the top predictors allowing the discrimination of land cover classes in our study area. The overall
accuracy of the classifiers ranged between 75 and 88%, with the ensemble classifier also yielding
a high accuracy (85%) and producing less bias than the individual classifiers. Some challenges
remained, such as shadows created by boulders and snow covered by soil material. We provide
recommendations for further improving classification methodology in the High Arctic, which is
important for the monitoring of Arctic ecosystems exposed to ongoing polar amplification.

Keywords: High Arctic; remote sensing; multispectral imagery; WorldView-2/3; ensemble classifier;
majority voting; snow; vegetation; water; shadow; human infrastructure

1. Introduction

Land cover maps are among the most important products derived from remotely
sensed data [1]. Land cover mapping aims to accurately identify the distribution of dif-
ferent types of coverings, such as vegetation, water, bare ground, rock, ice, snow, and
anthropogenic infrastructure, in a particular area [2]. Due to their chemical and physical
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characteristics, each land cover class absorbs, reflects, and transmits electromagnetic radia-
tion differently than other natural and anthropogenic covers, which makes remote sensing
possible [3,4]. Primarily developed for forestry and environmental impact assessment,
land cover maps are now important tools for multidisciplinary research and can support a
wide range of applications across scales, including the design of spatially stratified studies,
wildlife habitat assessment, and landscape-change detection [5,6].

With the recent advances in remote sensing technologies, including finer spatial and
spectral resolution imagery and improved spatial coverage [7], land cover and vegetation
maps are now being produced at a higher rate, especially for Arctic regions where there
is an urgent need to monitor the effects of climate change [8]. Dramatic climate warming
approximating four times the global average, known as Arctic amplification [9], coupled
with the Arctic’s fragile ecological environment, has caused and will continue to cause major
changes in this key region, leading to significant consequences for the earth system, such as
greenhouse gas release and sea-level rise [10]. Marked changes in the Arctic have already
been documented, including shifts in primary productivity, vegetation species composition,
hydrological and disturbance regimes (e.g., thawing permafrost and tundra fire), as well
as changes in herbivore grazing [8,11–14]. Land cover mapping thus provides a basis for
the comparable and repeated monitoring of these changes over time [15], enabling the
detection of potential ecosystem state changes. Applications of land cover and vegetation
maps associated with climate change in the Arctic encompass the monitoring of permafrost
degradation [16,17], upscaling of carbon fluxes and pools [18], the study of postfire tundra
succession [19,20], grazing impact assessment [21,22], vegetation monitoring [23–28], and
shore erosion evaluation [29]. Other uses of land cover maps include characterizing wildlife
habitats [30–32], establishing the ecological monitoring of Arctic national parks [33], and
estimating the human footprint due to infrastructure expansion [34].

There is still no commonly accepted methodology for high-latitude land cover map-
ping. Instead, a high variety of options exist in terms of sensors, classification methods and
algorithms, land cover classes, and predictors. Multiple sensors with different capabilities
have been used to achieve land cover classification, including high-to-coarse resolution,
multispectral or hyperspectral, satellite, or airborne sensors (i.e., airplane, helicopter, or
drone) [33,35–37]. Arctic ecosystem mapping efforts to date have applied image categori-
cal classifications consisting of procedures for assigning each pixel or object in an image
to a particular land cover class, using raster analysis or visual photo interpretation [6].
When raster analysis is chosen, the most used classification algorithms include random
forests (RFs) (e.g., [1,7,38–40]), maximum likelihood (ML) [5,35,41], convolutional neural
networks (CNNs) [42,43], support vector machines (SVMs) [44], artificial neural networks
(ANNs) [42], and linear discriminant analysis (LDA) [45]. Two methods of classification are
available when using raster analysis, namely supervised (classes are assigned to pixels or
segments by the analyst) and unsupervised (the algorithm detects patterns in data based on
the clustering of the spectral characteristics of pixels or segments) [2]. Supervised classifica-
tion usually needs a sufficient number of reference points classified through extensive in
situ surveys. The most accurate classifications of tundra vegetation were undertaken using
supervised learning with ground-based plot surveys [46–48]. The Arctic land cover classes
commonly include nonvegetated covers, such as snow, ice, human infrastructure, water,
and bare ground (shaded areas are usually also included in nonvegetated covers), as well as
vegetated covers that are stratified by community composition (e.g., [35,39,43,45,49]), plant
functional types [6,20,40,50], and percent vegetation cover [51]. As for predictors, spec-
tral bands, vegetation indices (e.g., the Normalized Difference Vegetation Index (NDVI)),
soil moisture indices (e.g., the Normalized Difference Water Index (NDWI)), and terrain
characteristics derived from a digital elevation model (DEM) (e.g., slope position and
shape, elevation, and aspect) have often been used to achieve classification for tundra
ecosystems [5,15].

Some land cover and vegetation maps covering the Arctic exist. Good examples
include the Circumpolar Arctic Vegetation Map (CAVM, [52,53]), the Climate Change



Remote Sens. 2023, 15, 3090 3 of 31

Initiative Land Cover (CCI-LC, [54]), the GlobeLand30 [55], and the Circumpolar Arctic
Land Cover product for circa 2020 (CALC-2020, [56]). However, these maps are still
spatially or thematically too coarse for many applications [57]. The spatial heterogeneity
of vegetation and terrain is omnipresent in the Arctic and is driven by the small stature
of tundra vegetation (occupying centimeters to a few meters of space both vertically and
horizontally), the presence of small waterbodies, and the differences in microelevation
due to geomorphic features, such as nonsorted circles, hummocks, low- or high-center
polygons, that relate closely to substrate moisture [15,37,58,59]. Consequently, high-to-
medium-resolution maps (<30 m grid cell size) are needed to represent this heterogeneity
of Arctic ecosystems [60].

Most studies aiming to map vegetated and nonvegetated covers to a fine scale focused
on Low Arctic rather than High Arctic ecosystems because it is logistically easier to collect
field data in the Low Arctic [15]. However, there are notable differences between the Low
and High Arctic, which limit the transferability of methods between these two regions. For
example, vegetated cover in certain High Arctic regions is discontinuous, with extensive
exposed rock and soil requiring the background reflectance to be considered to accurately
classify vegetation [45,61]. In addition, Low Arctic tundras include a canopy with multiple
strata and a shrub layer reaching 40 cm to 2 m high, whereas High Arctic deserts typically
have one or two layers of small-stature vegetation and a prostrate dwarf shrub layer no
more than 5 cm tall [61], thus making irrelevant the use of light detection and ranging
(LiDAR) or 3D stereoscopy to measure the canopy structure [24,62]. Biological and climatic
heterogeneity also exists within the High Arctic, especially between subzone A (polar
desert), subzone B (northern tundra), and subzone C (middle tundra), the three bioclimatic
subzones of the CAVM [53]. Although spatial heterogeneity is less significant in the
High Arctic than in the Low Arctic, methodologies for developing land cover maps must
be adapted to local and regional scales. Improved mapping and classification at the
appropriate thematic level and spatial and temporal scales will significantly advance our
understanding and monitoring of Arctic ecosystems.

Here, we aimed to produce a highly accurate land cover map of a large patch of
polar desert surrounding the Canadian Forces Station Alert on Ellesmere Island (Nunavut,
Canada) for future use in wildlife habitat assessment and ecological monitoring. This
was necessary to bring the Department of National Defence of Canada into supporting
the Nunavut Wildlife Act, Migratory Birds Convention Act, and Species at Risk Act.
Polar deserts, bioclimatic subzone A, are the most representative landscapes of the High
Arctic, encompassing 1,358,000 km2 or approximately 26% of the terrestrial Arctic [63] and
yet remain less studied than any other Arctic region. This case study provided us with
an exceptional opportunity to test different classification algorithms (or classifiers) and
predictors to accurately map land cover classes and assess the most adapted methodology
for a High Arctic site. Notably, we included as predictors vegetation indices that were
able to consider the effect of the soil background [64], as polar deserts are predominantly
characterized by sparse vegetation on a bare soil or rocky substrate. The spectral properties
of soils are known to influence the detection of sparse vegetation when using common
vegetation indices, such as the NDVI and the Green Normalized Difference Vegetation
Index (GNDVI) [64]. We also included hydrological predictors because water deficit is one
of the most common environmental stresses limiting primary productivity in the terrestrial
Arctic [65]. In addition, we tested eight popular classifiers, including the most widely used
(RFs and ML) and used an ensemble classifier (EC) based on a majority voting algorithm,
with each classifier having one vote and each pixel retaining the land cover class with the
highest vote [66]. Combining independent classifiers through an EC is a recognized method
for improving the accuracy of the model [66]. Through the evaluation of a large range
of predictors and multiple commonly used algorithms, our study demonstrates how to
determine the most appropriate methodology to generate an accurate map of High Arctic
land cover classifications. We also provide general recommendations on themes that are
common to most land cover mapping exercises. In an effort to allow replicability and
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facilitate the mapping of land cover classes for other Arctic sites [15], the R scripts that were
used to create the land cover maps of this study are freely available on Dryad [67].

2. Materials and Methods

Our methodological workflow (Figure 1) involves four steps, each described below in
its own section, namely data acquisition and extraction (Section 2.2), data preprocessing
(Section 2.3), classification of land cover classes (Section 2.4), and data postprocessing
(Section 2.5).
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Figure 1. Workflow outlining the four major steps for the development of land cover maps in the
polar desert surrounding the Canadian Forces Station Alert (Alert, NU, Canada). Capital letters in
the blue circles indicate which software was used for the different computations or visualizations: A
for ArcGIS Pro version 3.0.3 and R for R software version 4.2.1. Full and dashed lines are only used to
improve clarity of the figure. Acronyms used: ArcticDEM (Arctic digital elevation model), ANNs
(artificial neural networks), CARTs (classification and regression trees), EC (ensemble classifier),
KNNs (K-nearest neighbors), LDA (linear discriminant analysis), ML (maximum likelihood), NB
(naive Bayes), RFs (random forests), SVMs (support vector machines).
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2.1. Study Area

The 170 km2 study area surrounds the Canadian Forces Station Alert (82◦30′N,
62◦20′W), the northernmost permanently inhabited settlement on Earth, which is located
on the northeastern tip of Ellesmere Island, Nunavut, Canada (Figure 2). The study area
(hereafter called “Alert”) is roughly delimited by the Lincoln Sea to the north and the
boundaries of Alert property in other directions. Toponymy of local landscape features
appears in Desjardins et al. [68]. The entire area lies in a zone of continuous perma-
frost > 600 m thick, with an underlying highly calcareous bedrock, composed of argillite
with greywacke in some places [69]. Alert is situated in bioclimatic subzone A of the CAVM,
the coldest bioclimatic subzone in the Canadian Arctic, with an average July temperature of
3 ◦C [70]. This subzone is generally characterized by a polar desert landscape that is mostly
barren with some lichens, biological soil crusts, and mosses, as well as vascular plant
cover <5% [70]. The development of plant communities is limited by nitrogen availability
that increases with soil moisture [71]. The uplands are mostly mesic or xeric and consist
mainly of boulders, frost-shattered rocks, gravel, and polygonal nets of till, with very low
vegetation cover growing inside soil interstices. In the lowlands where soil moisture accu-
mulates, a more continuous vegetation cover develops, consisting primarily of grasses and
sedges [72]. The sun remains under the horizon from mid-October to late February, and a
24 h sunlight period occurs from early April to early September. The growing season ex-
tends from June to August. Climate in the study area is strongly influenced by its proximity
to sea ice with a mean temperature in the warmest month of approximately 3.4 ◦C and
annual snowfall and rainfall averaging, respectively, 184.6 and 1.7 cm (corresponding to a
combined water equivalent of 158 mm) [73].
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Figure 2. (a) Location of the study area (star) at the northeastern tip of Canada; (b) hillshade of
the Arctic digital elevation model of the study area obtained freely from Harvard Dataverse [74]
(Porter et al., 2018); (c) pan-sharpened multispectral satellite imagery of the study area (World-
View-2/3; 15 July 2020) with training (grey) and validation (green) points.

2.2. Data Acquisition and Extraction
2.2.1. Ground Reference Data

We obtained ground references for seven land cover classes: forb-dominated bar-
ren, forb-dominated tundra, grass-dominated wetland, sedge-dominated wetland, moss-
dominated wetland, water, and snow. The five plant communities were identified in
Desjardins et al. [75] and are described in Table 1. Briefly, we conducted stratified random
plot-based surveys during the summers of 2018 and 2019, with survey locations adjusted
so that plots were located within homogeneous vegetation patches. GPS coordinates were
collected using a Garmin GPSMAP 64s (±3 m accuracy) (Garmin, Olathe, KS, USA). The
obtained 264 vegetation plots were categorized into plant communities by applying hierar-
chical clustering on the cover values of vascular plant species, cryptogams, and ground
substrates. We supplemented these field observations with additional 147 ground reference
points through photo interpretation of water and snow bodies, using the satellite imagery
of the study area (Figure 2c). We also added 33 reference points for forb-dominated barren
in illuminated canyon slopes and saline soils along the coast (Figure S1) as they were con-
fused with snow in preliminary classifications. As the sedge-dominated wetland and the
moss-dominated wetland communities were under-represented in the plot-based surveys
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(26 and 5 plots among 264, respectively), we assigned 23 additional ground references based
on known localization of these specific communities. The resulting ground reference dataset
(n = 467 points) was randomly split into two datasets to evaluate predictive performance of
models on independent data. The first dataset was a training dataset containing 80% of
the data, while the second was a validation dataset containing the remaining 20% (Table 2).
Each training reference was buffered by a circle of 6 m radius for the vegetation classes to
correspond to the vegetation plot diameter and by a circle of 2 m radius for the water and
snow classes (to prevent the buffer from exceeding narrow rivers and small ponds). We
then calculated the mean value of predictors within each buffer for both predictor selection
(Section 2.3.3) and classification training (Section 2.4).

Table 1. Description of the five plant communities, including dominant vegetation and mean
percentage cover of ground, cryptogams, and vascular species groups. Adapted with permission
from Desjardins et al. [75] (© 2021 The Author(s). Published by Informa UK Limited, trading as
Taylor & Francis Group).

Plant
Community Dominant Vegetation

Cover (%)

Soil/Rock Biological
Soil Crust Lichen Moss Algae/

Macrofungus Graminoid Forb Shrub

Forb-
dominated

barren

Saxifraga oppositifolia
Linnaeus subsp. oppositifolia

Salix arctica Pallas
Mosses

88.0 0.2 1.5 1.6 0 2.1 5.6 1.8

Forb-
dominated

tundra

Saxifraga oppositifolia
Linnaeus subsp. oppositifolia

Mosses
Stellaria longipes Goldie

subsp. longipes

57.2 1.3 0.7 8.7 0.1 6.5 25.0 2.1

Grass-
dominated

wetland

Mosses
Alopecurus magellanicus

Lamarck
Juncus biglumis Linnaeus

21.0 3.6 0.2 22.3 0.5 35.8 13.9 4.3

Sedge-
dominated

wetland

Eriophorum triste (Th. Fries)
Hadac and Á. Löve

Mosses
Salix arctica Pallas

4.0 0.2 <0.1 20.5 0.1 58.2 7.6 10.3

Moss-
dominated

wetland

Mosses
Saxifraga cernua Linnaeus
Luzula nivalis (Laestadius)

Sprengel

3.7 4.1 0.5 53.0 0.3 15.7 24.2 0.4

Table 2. Sample size of training and validation points for each of the seven land cover classes.

Land Cover Class Training (80%) Validation (20%) Total (100%)

Forb-dominated barren 96 24 120
Forb-dominated tundra 63 15 78

Grass-dominated wetland 55 13 68
Sedge-dominated wetland 23 6 29
Moss-dominated wetland 20 5 25

Water 53 13 66
Snow 65 16 81

Total 375 92 467

2.2.2. Satellite Imagery

We acquired cloud-free WorldView-2/3 (DigitalGlobe, Westminster, CO, USA) satellite
imagery of the study area taken on 15 July 2020. The imagery included a 0.5 m resolution
panchromatic image and four spectral bands at 2 m resolution with the following spectral
range: 450–510 nm for blue, 510–580 nm for green, 630–690 nm for red, and 770–895 nm for
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near-infrared. The imagery bundle was scaled, orthorectified, enhanced, mosaiced, and
pan-sharpened (0.5 m pixel size) on delivery by Pacific Geomatics Ltd. (Cowichan Bay, BC,
Canada). Through visual inspection of the satellite imagery, we confirmed that there were
no noticeable changes in vegetation between the date of the picture and our field surveys.

2.2.3. Digital Elevation Model

The DEM data were obtained from the 2 m-resolution ArcticDEM [74] and used to
calculate topographical parameters. We rescaled the pixel resolution to 0.5 m using the
Project Raster tool in ArcGIS Pro version 3.0.3 [76] to perfectly overlap the pixel size, the
pixel orientation, and the extent of the DEM layer with the pan-sharpened satellite imagery
of the study area.

2.2.4. Predictors

We computed 38 predictors distributed as follows: 4 multispectral bands, 10 vegetation
indices, 16 topographic derivatives, and 8 variables associated with hydrology. The stan-
dard deviation was included for some predictors when it was found relevant to represent
spatial variability. The description of each predictor and its computing method is available
in Table S1 of the Supplementary Materials.

Spectral Predictors

We extracted the four pan-sharpened bands (blue, green, red, and near-infrared) from
the satellite imagery, using the extract bands function in ArcGIS Pro.

Vegetation Predictors

A large number of vegetation indices can be obtained from a multispectral image,
hence the need to narrow down the selection. We first proceeded by computing over our
study area eight commonly used vegetation indices, including indices that consider the
effect of soil background, and used each vegetation index separately in an unsupervised
ML classification in ArcGIS Pro. We then evaluated the overall accuracy of the classification
of each vegetation index with the ground reference data and selected the five indices that
reached at least 75% of accuracy. These five selected vegetation indices were the Green
Normalized Difference Vegetation Index (GNDVI) [77], the Modified Soil-Adjusted Vegeta-
tion Index 2 (MSAVI2) [78], the Normalized Difference Vegetation Index (NDVI) [79], the
Soil-Adjusted Vegetation Index (SAVI) [80], and the Transformed Soil-Adjusted Vegetation
Index (TSAVI) [81]. Although there is some redundancy among these indices, their simulta-
neous use increased the amount of information available to characterize vegetation [6]. The
three vegetation indices that were discarded are the Simple Ratio Index [82], the Enhanced
Vegetation Index [83], and a simple multiplication of the four bands.

As mentioned previously, we included vegetation indices developed to consider the
effect of soil background [64] because the study area is predominantly characterized by
sparse vegetation on a bare soil substrate. MSAVI2 and TSAVI are two variations of SAVI,
and both have been found to outperform the original SAVI index [84]. TSAVI uses the
parameters from the soil line (formula: Near-infrared = a × Red + b) [85]. The soil line
corresponds to a linear relationship on the 2D plane of the soil spectral reflectance values
between the near-infrared and red band values [85,86]. As there is no universal soil line
for all soil types, as the spectral signatures vary with soil color, mineralogy, grain size, and
moisture [87–89], we computed the soil line for our study area (by preliminarily removing
the large waterbodies, such as lakes, bays, inlets, and ocean) with the BSL function from
the Landsat package version 3.2.5 [90] using the R software version 4.2.1 [91] (hereafter
referred to as “R”). MSAVI2 has a simpler algorithm and does not require a soil line plot to
be generated or to specify the soil brightness correction factor as in SAVI [86].
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Topographic Predictors

We used the ArcticDEM data to calculate in ArcGIS Pro the commonly used topo-
graphic indices, namely aspect, aspect–slope curvature, elevation, slope (in degrees), relief,
Topographic Position Index (TPI) [92,93], and Terrain Ruggedness Index (TRI) [94].

Hydrological Predictors

We used as hydrological predictors the distances to the nearest shore or limit of four
water sources providing a steady supply of water throughout the summer for vegetation
growth, namely lakes and permanent ponds (i.e., ponds present at the end of the summer),
active rivers (i.e., water flow persistent throughout the summer, not only during the
spring melt), perennial snowbanks (i.e., large amounts of snow accumulated on slopes and
persisting for decades or longer), and ocean. We also generated the Normalized Difference
Water Index (NDWI) [95] and the Topographic Wetness Index (TWI) [96].

We manually digitized the waterbodies (lakes, permanent ponds, and rivers) on
the satellite imagery, using the create features tool in ArcGIS Pro. We delimited snow-
banks in ArcGIS Pro using an unsupervised ML classification in which training references
were collected by visual interpretation of the pan-sharpened multispectral satellite im-
agery. As unsupervised ML classification is time-consuming, we used images taken on
2 and 15 August 2015, where snowbanks had previously been delineated using this ap-
proach. Where necessary, we manually re-delineated snowbanks on ArcGIS Pro to include
snowbanks hidden by shadows or covered by gravel or to adjust the size of those that
were larger on the 2015 satellite imagery than on the 2020 image. We used the distance
accumulation tool in ArcGIS Pro to calculate distances from each pixel to the nearest shore
or limit of a lake or permanent pond, active river, perennial snowbank, and ocean.

2.3. Data Preprocessing
2.3.1. Masking Open Water, Lakes, Human Infrastructure, and Shaded Areas

Large waterbodies (i.e., lakes, bays, inlets, ocean), human infrastructure (i.e., buildings,
airfields, pipelines, maintained roads, disturbed soils around roads and buildings), and
shaded areas were removed from the satellite imagery to reduce the computational expense
of the segmentation and classification. To do so, we used the manually digitized coastline,
lakes, and human infrastructure in ArcGIS Pro. We used the hillshade tool in ArcGIS Pro
to create a layer with shaded areas (Figure 2b) from the ArcticDEM and the solar altitude
angle (22.8◦) and the solar azimuth angle (260.8◦) of the satellite imagery. We masked the
resulting layers out of all the predictor raster layers on ArcGIS Pro.

2.3.2. Segmentation

We grouped the satellite imagery pixels that remained after masking into clusters
of similar contiguous pixels (hereafter called “segments”) using the segmentation tool
on ArcGIS Pro. Segments represent more meaningful ecological entities than individual
pixels [97] and are known to reduce the small-scale heterogeneity that may cause misclassi-
fications [98]. Given that the resulting land cover map is intended to be used in a wildlife
habitat assessment (e.g., Peary caribou Rangifer tarandus pearyi) and stratified ecological
sampling context, a minimum segment size of 10 m2 appears adequate. Based on parameter
testing, we visually evaluated the segmentation contours overlaid on the satellite imagery,
and selected segmentation parameters that best discriminated between spectral differences
of features on the satellite imagery while keeping the resolution moderate to suit our needs.
The segmentation parameters were set as follows: spectral detail = 20, spatial detail = 1,
and minimum segment size = 20.

For each predictor layer, we calculated the mean, minimum, or standard deviation of
the 0.5 × 0.5 m pixels within each segment using zonal statistics tool in ArcGIS Pro.
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2.3.3. Predictor Selection

Predictor selection is an important step because it helps build predictive models free
from correlated variables, biases, and unwanted noise [2,99], hence reducing the complexity
of the model and making it easier to interpret [99,100].

We used three complementary methods to select the predictors most important to
discriminate land cover classes. First, we used the receiver operator characteristic (ROC)
curve as a filter method to measure the relevance of each predictor in isolation based
on correlation with each land cover class [101]. Filter methods are generally used as a
preprocessing step where the selection of predictors is independent of any machine learning
algorithm [101]. We calculated the ROC curve analysis using the package caret version
6.0-93 in R [102]. We used area under the ROC curve (AUC) as a metric to evaluate the
relevance of a given predictor to a target class, with high relevance being indicated by AUC
approaching 1 [101]. We removed all predictors with AUC values < 0.80 for each land cover
class. This threshold was chosen because values ≥0.80 allow good discrimination [103].

Second, we used Boruta as a wrapper method to iteratively find the optimal com-
bination of predictors that maximized model performance [101]. Boruta is a predictor
ranking and backward selection algorithm based on RF algorithm [104]. It determines
the importance of predictors by comparing the relevance of the real predictors to that
of random probes called shadows, which are copies of original predictors but with ran-
domly mixed values so that their distribution remains unchanged, yet their predictive
importance is wiped out [100]. Boruta generates importance scores for each predictor
as well as color-coded boxplots. Green, yellow, and red boxplots indicate predictors of
confirmed importance, unknown importance, and confirmed unimportance, respectively.
Blue boxplots depict the scores of the shadow attribute (minimal, mean, and maximum
Z scores). We removed predictors characterized by yellow and red boxplots. We used the
Boruta package version 5.2.0 implemented in R [105].

Third, we tested for predictor correlation to reduce multicollinearity and redundant
information. We generated a correlogram in R using the packages stats version 3.6.2 [106]
and corrplot version 0.92 [107] to identify the highly correlated predictors. For predictors
that had a correlation of 1 and −1 with another predictor, we kept the predictor with the
highest importance score from Boruta output. Although there was still multicollinearity, it
did not affect the accuracy of classifiers’ predictions [108].

2.4. Classification of Land Cover Classes

We classified the seven land cover classes with a supervised object-based approach.
We used the selected predictors to train one parametric classifier, ML [109], seven nonpara-
metric classifiers, and one EC. We calculated ML in ArcGIS Pro using the classification
wizard workflow.

The nonparametric classifiers included ANNs [110], classification and regression trees
(CARTs) [111], K-nearest neighbors (KNNs) [112,113], LDA [114], naive Bayes (NB) [115],
RFs [104], and SVMs [116]. These are some of the most common classifiers, which are
used for remote sensing image processing and classification [2,101]. We calculated ANNs,
CARTs, KNNs, LDA, and SVMs in R using the caret package [102]. We calculated NB using
the e1071 package version 1.7-11 [117] and RFs using the package randomForest version
4.7-1.1 [118] in R.

We used a classifier ensemble by combining the predictions of the four classifiers that
showed the highest classification accuracy (RFs, LDA, CARTs, and ML; see Section 3). To do
so, we used a majority voting algorithm, which retains for each segment the land cover class
with the highest vote among the predictions of four individual classifiers [66]. We chose
the majority voting method because it is commonly used for multiclass problems, and it is
easy to implement compared to other ensemble methods [119]. As there are currently no
packages implemented in R to generate multiclass ensemble with the individual classifiers
we used, we built our own function Maj.voting.fct() in R (script archived in Dryad [67]).



Remote Sens. 2023, 15, 3090 11 of 31

When predictions differed across classifiers, we retained the prediction of the classifier with
the highest accuracy.

2.5. Data Postprocessing
2.5.1. Validation

We tested classification accuracy using a set of independent validation data (20%
of the initial ground truth data; Table 2) as reference data in a confusion matrix. The
confusion matrix, which is a cross-tabulation of the actual (reference) and predicted classes
is often used for land cover accuracy assessment [3]. From the confusion matrix, commonly
used metrics were derived, that is overall accuracy, kappa coefficient, balanced accuracy,
user’s accuracy (which corresponds to 100%—commission error), producer’s accuracy
(which corresponds to 100%—omission error), and 95% confidence intervals [120], using
caret package in R [99]. Coefficients ≥80% represent strong agreement and good accuracy,
40–80% middle agreement, and <40% poor agreement [121]. We also assessed accuracy
through visual inspection of derived maps. Based on our knowledge of the terrain in the
study area and georeferenced photos taken in the field in 2018 and 2019, we cross-checked
the classified maps with known (real) land classes.

2.5.2. Final Maps

We added to each of the classified land cover maps the human infrastructure, shad-
owed areas, and large waterbody layers that we used for masking in Section 2.3.1. Water-
body and water classes were merged as one class in the final map, hence obtaining final
maps with nine land cover classes.

3. Results
3.1. Assessment of Predictor Importance

Five predictors had AUCs of <0.80 for all seven land cover classes (Table 3), that
is aspect, standard deviation of aspect, curvature, distance to rivers, and the TPI. The
most relevant predictors (AUC ≥ 0.99) allowing the discrimination of land cover classes
differed among the classes (Table 3). For the forb-dominated barren, distance to the
nearest snowbank was the most relevant predictor. It had the largest mean distance from
a snowbank (440 m) among the vegetation classes (Table S2). For the forb-dominated
tundra, the four spectral bands, as well as the standard deviations of the GNDVI and
the NDWI were the most relevant predictors. In the grass-dominated wetland and water
classes, the blue, green, and red bands, as well as all the mean values of the vegetation
indices and the NDWI were equally relevant. For the sedge-dominated wetland, the top
predictors included the four spectral bands, the distance to snowbanks, as well as the
standard deviations of the GNDVI and the NDWI. For the moss-dominated wetland, all
the mean values of the vegetation indices, the mean NDWI, and the distance to snowbanks
were equally relevant. For the snow class, the blue and green bands, the mean NDWI, and
all the mean values of the vegetation indices (except the TSAVI) were the most relevant.
Surprisingly, distance to the nearest snowbank was not as relevant in discriminating snow
(AUC = 0.52), although the mean distance and the standard deviation to a snowbank were
0 (Table S2).
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Table 3. Area under the receiver operator characteristic curve (AUC) as a measure of predictor
relevance for each land cover class. Asterisks indicate AUCs < 0.80 for all seven classes.

Predictor
Forb-

Dominated
Barren

Forb-
Dominated

Tundra

Grass-
Dominated

Wetland

Sedge-
Dominated

Wetland

Moss-
Dominated

Wetland
Water Snow

Spectral predictors

Blue 0.93 0.99 1.00 0.99 0.98 1.00 0.99
Green 0.89 1.00 1.00 1.00 0.97 1.00 0.99
Red 0.85 1.00 0.99 1.00 0.96 0.99 0.98

Near-infrared 0.77 1.00 0.64 1.00 0.87 0.84 0.58

Vegetation predictors

GNDVI 0.94 0.95 1.00 0.95 1.00 1.00 1.00
GNDVI std 0.84 0.99 0.81 0.99 0.91 0.88 0.79

MSAVI2 0.96 0.96 1.00 0.96 1.00 1.00 1.00
MSAVI2 std 0.63 0.98 0.94 0.98 0.63 0.90 0.78

NDVI 0.96 0.96 1.00 0.96 1.00 1.00 1.00
NDVI std 0.71 0.95 0.68 0.95 0.76 0.70 0.58

SAVI 0.96 0.96 1.00 0.96 1.00 1.00 1.00
SAVI std 0.70 0.95 0.68 0.95 0.76 0.70 0.58
TSAVI 0.96 0.96 1.00 0.96 1.00 1.00 0.98

TSAVI std 0.88 0.83 0.98 0.88 0.98 1.00 0.97

Topographic predictors

Aspect * 0.68 0.68 0.76 0.68 0.63 0.65 0.72
Aspect std * 0.64 0.70 0.64 0.70 0.64 0.64 0.64

Aspect–slope 0.71 0.83 0.71 0.83 0.93 0.71 0.74
Aspect–slope std 0.72 0.84 0.72 0.84 0.92 0.72 0.76

Curvature * 0.58 0.65 0.58 0.65 0.60 0.57 0.63
Curvature std 0.73 0.83 0.70 0.83 0.96 0.70 0.73

Elevation 0.70 0.70 0.70 0.69 0.70 0.87 0.70
Elevation std 0.56 0.89 0.74 0.89 0.52 0.81 0.73

Relief 0.73 0.83 0.69 0.83 0.96 0.69 0.72
Relief std 0.72 0.83 0.71 0.83 0.95 0.71 0.74

Slope 0.73 0.83 0.69 0.83 0.96 0.69 0.72
Slope std 0.73 0.83 0.71 0.83 0.95 0.71 0.73

TPI * 0.58 0.66 0.62 0.66 0.58 0.62 0.65
TPI std 0.73 0.83 0.70 0.83 0.96 0.70 0.73

TRI 0.74 0.80 0.68 0.80 0.96 0.68 0.70
TRI std 0.71 0.76 0.71 0.76 0.90 0.62 0.66

Hydrological predictors

Distance to lakes/ponds 0.56 0.84 0.60 0.84 0.61 0.57 0.53
Distance to ocean 0.65 0.64 0.64 0.65 0.64 0.88 0.64

Distance to rivers * 0.62 0.59 0.60 0.62 0.73 0.64 0.61
Distance to snowbanks 1.00 0.58 0.57 1.00 1.00 0.67 0.52

NDWI 0.94 0.95 1.00 0.95 1.00 1.00 1.00
NDWI std 0.84 0.99 0.81 0.99 0.91 0.88 0.79

TWI 0.74 0.83 0.74 0.83 0.95 0.74 0.76
TWI std 0.67 0.68 0.51 0.68 0.73 0.72 0.51

According to the output of Boruta, 35 predictors were considered important, with
distance to snowbanks being the most important predictor, followed by the MSAVI2 and
the SAVI (Figure 3). One predictor (the standard deviation of the TWI) was considered
unimportant. Boruta did not allow the importance of the TPI and the standard deviation of
curvature to be concluded.
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Figure 3. Boruta result plots for the 38 potential predictors tested for the land cover classification.
Green, yellow, and red boxplots indicate predictors of confirmed importance, unknown impor-
tance, and confirmed unimportance, respectively. Blue boxplots correspond to minimal, mean, and
maximum Z score of a shadow attribute.

The correlogram indicated perfect correlation between the relief, the TRI, the standard
deviation of TPI, and the standard deviation of curvature (Figure S2). Among these four
predictors, we retained relief as it had the highest importance score according to the Boruta
analysis (Figure 3). There was also a correlation of 1 between the SAVI and the NDVI and
between the NDWI and the GNDVI, whether mean values or standard deviations were
used as predictors. We retained the SAVI and the NDWI (mean and standard deviation), as
they had higher importance scores according to Boruta (Figure 3).

Overall, our assessment of predictor performance allowed us to exclude 13 predictors
from the classification analyses. Aspect, standard deviation of aspect, curvature, distance
to rivers, and the TPI were excluded because they were not highly relevant with either one
of the land cover classes (i.e., AUCs < 0.80). Standard deviation of the TWI and standard
deviation of curvature were excluded because their inclusion did not improve the accuracy
of the model according to Boruta results (the TPI was also discarded with Boruta). The
NDVI, GNDVI, standard deviation of the NDVI, standard deviation of the GNDVI and
the TRI, and standard deviation of the TPI were excluded because they were redundant
and collinear based on the correlation matrix (the standard deviation of curvature was
discarded again due to its perfect correlation with relief).

3.2. Image Classification and Validation

The overall accuracies of the classifiers ranged between 75% and 88% (Table 4). There
was strong overlap between the confidence intervals of the overall accuracy of the classifiers,
thus they were not considered statistically different. However, upon close visual inspection
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and cross-checking of the classifier results with known land classes in the field, some
discrepancies were discernible. Notably, all classifiers wrongly classified, as water or grass-
dominated wetland, the unmasked shadow that was produced by boulders at a resolution
<2 m, which is the resolution of the ArcticDEM hillshade (Figure S3). Some snowbanks
covered by soil material (e.g., till and gravel) had darker surfaces and were classified as
forb-dominated barren instead of snow (Figure S4). In addition, the ANN, SVM, NB, and
KNN classifiers consistently classified rocky areas on the illuminated side of canyons as
snow instead of forb-dominated barren (Figure 4). Due to this extended misclassification,
these four classifiers were not included in the EC.

Table 4. Balanced accuracy (%) of seven land cover classes derived from confusion matrices for nine
classifiers. Bottom rows indicate the overall accuracy (%) and Kappa coefficient for each classifier.

Land Cover Class RFs ANNs NB EC SVMs LDA CARTs ML KNNs

Forb-dominated
barren 93.0 94.4 88.9 90.9 88.1 85.9 93.4 86.8 82.5

Forb-dominated
tundra 83.4 88.7 86.8 82.1 84.1 83.4 83.7 87.5 76.1

Grass-dominated
wetland 89.1 89.8 82.7 81.5 86.6 89.8 70.2 74.4 70.5

Sedge-dominated
wetland 83.3 74.4 90.0 82.8 81.6 82.2 80.1 73.3 79.3

Moss-dominated
wetland 100.0 99.4 99.4 100.0 99.4 100.0 99.4 100.0 89.4

Water 100.0 99.4 100.0 100.0 99.4 96.2 100.0 100.0 100.0
Snow 100.0 96.9 100.0 100.0 100.0 93.8 100.0 100.0 99.3

Overall accuracy
(95% confidence

interval)

88.0
(79.6–93.9)

88.0
(79.6–93.9)

85.9
(77.1–92.3)

84.8
(75.8–91.4)

84.8
(75.8–91.4)

82.6
(73.3–89.7)

81.9
(72.0–89.5)

81.5
(72.1–88.9)

75.0
(64.9–83.5)

Kappa coefficient 85.6 85.6 83.1 81.7 81.8 79.0 78.5 77.8 70.1

RFs (random forests), ANNs (artificial neural networks), NB (naive Bayes), EC (ensemble classifier), SVMs
(support vector machines), LDA (linear discriminant analysis), CARTs (classification and regression trees), ML
(maximum likelihood), KNNs (K-nearest neighbors).

Regardless of which classifiers were used, all land cover classes had a balanced
accuracy of >0.70 and were thus relatively well discriminated (Table 4). Moss-dominated
wetland, water, and snow were the best discriminated classes due to their balanced accuracy
of >0.89 for all classifiers.

Combining multiple classifiers by taking the prediction majority in the EC reduced
the bias appearing in some individual classifiers. In some cases, the CARTs, LDA, RFs and
ML misclassified the vegetation, but by taking the majority, the EC was less influenced by
these errors. For example, in Figure 5 (column a), ML was unable to detect the patch of
forb-dominated barren, while RFs, LDA, and CARTs did so successfully, which translated
into the EC correctly predicting that patch. Similarly, LDA is the only classifier to have
misclassified a patch of forb-dominated tundra as grass-dominated wetland (Figure 5,
column b). In Figure 5 (column e), the RFs and ML correctly classified the patch as
moss-dominated wetland, while the LDA and CARTs partially detected it, hence the EC
prediction was accurate. On the other hand, in the few cases where two or more classifiers
generated classification errors, these errors also appeared in the EC classification. For
example, in Figure 5 (column c), RFs were the only classifier correctly classifying the patch
as grass-dominated wetland, while the other classifiers predicted a larger area of sedge-
dominated wetland. As a result, this error also appeared in the EC. Based on our field
observations, the patch in Figure 5 (column d) should have been classified almost entirely
as sedge-dominated wetland in the EC, but this was not the case as only the CARTs and
ML correctly predicted this vegetation class.
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Figure 4. False color infrared (near-infrared, red, and green bands) satellite imagery (top panel) and
classified subareas (9 lower panels) within Alert illustrating variation in classification predictions
using RFs (random forests), ANNs (artificial neural networks), NB (naive Bayes), EC (ensemble
classifier), SVMs (support vector machines), LDA (linear discriminant analysis), CARTs (classification
and regression trees), ML (maximum likelihood), and KNNs (K-nearest neighbors). Percentages
indicate overall accuracy of the classifiers, which was derived from the confusion matrices. Arrows
on the top panel point to the slopes of illuminated canyons, which were misclassified as snow by
ANNs, NB, SVMs, and KNNs.
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Figure 5. Ground photographs (first row) of the five vegetation classes ((a) forb-dominated
barren; (b) forb-dominated tundra; (c) grass-dominated wetland; (d) sedge-dominated wetland;
(e) moss-dominated wetland) taken from various locations shown in the false color infrared imagery
(second row). The corresponding classification by four classifiers is shown in rows 4 to 7. The EC
(ensemble classifier; third row) was built from the predictions of the RFs (random forests), LDA (linear
discriminant analysis), CARTs (classification and regression trees), and ML (maximum likelihood).
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3.3. Final Land Cover Map

We calculated a confusion matrix based on the classification resulting from the EC.
The confusion matrix showed that moss-dominated wetland, water, and snow were ac-
curately classified, with both producer’s and user’s accuracies reaching 100% (Table 5).
The main confusion was for the sedge-dominated wetland (omission error = 33%), which
was confused with the grass-dominated wetland (Table 5). The commission error was
relatively high (36–39%) for the forb-dominated tundra and the grass-dominated wetland
(Table 5). Some validation points classified as forb-dominated tundra actually belonged to
forb-dominated barren and grass-dominated wetland, while some points classified as grass-
dominated wetland belonged, in reality, to forb-dominated tundra and sedge-dominated
wetland (Table 5). The confusion matrix, which is based on validation points representing
20% of all reference data, led to a very small validation sample size for sedge-dominated
wetland and moss-dominated wetland (Table 2). This makes the accuracy metrics more
difficult to interpret for these land cover classes, as there were relatively few opportunities
to test accuracy in these classes.

Table 5. Confusion matrix derived from independent validation dataset and classification predictions
of an ensemble classifier, based on four algorithms, namely random forests, linear discriminant
analysis, classification and regression trees, and maximum likelihood.

Reference (Actual Classes)

Forb-
Dominated

Barren

Forb-
Dominated

Tundra

Grass-
Dominated
Wetland

Sedge-
Dominated
Wetland

Moss-
Dominated
Wetland

Water Snow Total User’s
Accuracy (%)

Pr
ed

ic
ti

on
(p

re
di

ct
ed

cl
as

se
s) Forb-dominated

barren 20 1 0 0 0 0 0 21 95.2

Forb-dominated
tundra 4 11 3 0 0 0 0 18 61.1

Grass-dominated
wetland 0 3 9 2 0 0 0 14 64.3

Sedge-dominated
wetland 0 0 1 4 0 0 0 5 80.0

Moss-dominated
wetland 0 0 0 0 5 0 0 5 100.0

Water 0 0 0 0 0 13 0 13 100.0
Snow 0 0 0 0 0 0 16 16 100.0

Total 24 15 13 6 5 13 16 92

Producer’s
accuracy (%) 83.3 73.3 69.2 66.7 100.0 100.0 100.0 84.8

Over the entire land area of 162 km2 (including lakes) (Figure 6), the forb-dominated
tundra had the largest areal coverage (44.9%), followed by forb-dominated barren
(33.9%), grass-dominated wetland (12.8%), shadow (2.9%), water (2.4%), human infra-
structure (1.1%), sedge-dominated wetland (1.0%), snow (0.5%), and moss-dominated
wetland (0.5%).
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Figure 6. Land cover map of the surroundings of the Canadian Forces Station Alert (Alert, NU,
Canada) derived from WorldView-2/3 multispectral data using 25 predictors and an ensemble
classifier based on four algorithms, namely random forests, linear discriminant analysis, classification
and regression trees, and maximum likelihood. The final land cover map in geotiff format with a
resolution of 0.5 × 0.5 m per pixel is available on Dryad [67].

4. Discussion

The Arctic is changing rapidly, and remote sensing is increasingly used to understand
the causes and consequences of these changes. For example, land cover mapping provides
a tool for the comparable and repeated monitoring of changes over time. Due to the high
spatial heterogeneity of vegetation and terrain in the Arctic, there is no universal methodol-
ogy to classify all Arctic terrestrial ecosystems with high accuracy. However, ecosystem
mapping would benefit from the contributions of local ecosystem classifications sharing
lessons learned and best practices. Hence, several studies spread across the circumpolar



Remote Sens. 2023, 15, 3090 19 of 31

world have tested and proposed methods that were most relevant to their site and ob-
jectives. Here, we presented a methodology to produce a very accurate land cover map
of the surroundings of the Canadian Forces Station Alert on Ellesmere Island (Nunavut,
Canada). Our methodological scheme is based on a combination of existing or commonly
used procedures, algorithms, and predictors but differs from other studies published in
the Arctic by including water-related predictors and combining multiple classifiers in an
ensemble. Our study is also among the few taking place in a polar desert, a landscape
that is both the most representative and least studied of the High Arctic. In the following
sections, we assess the predictor importance and discuss the classification performance of
popular classifiers compared to the EC. Finally, we compile recommendations to improve
the development of land cover maps in High Arctic regions, which should significantly
advance the monitoring of Arctic ecosystems.

4.1. Predictor Importance

Among the 25 predictors used for classification, distance to snowbanks, the MSAVI2,
the SAVI, the TSAVI, and the NDWI were the top five predictors allowing the discrimination
of land cover classes in our study area (Figure 3). Although the NDVI was among the most
important predictors, it was discarded from the classification due to its perfect correlation
with the SAVI (Figure S2). It should be mentioned that the importance scores of these
vegetation indices were only slightly higher than the nonsoil-adjusted vegetation indices,
the NDVI, and the GNDVI. As in other studies [6,122], topographic predictors were less
important, which is surprising as topography drives soil moisture and water flow.

Predictor importance may suggest underlying biophysical mechanisms [6]. For ex-
ample, the NDWI and distance to the nearest snowbank increased classification accuracy
and thus highlight that water availability is crucial to predict vegetation classes in polar
deserts. The water table depth and soil moisture are intrinsically linked to vegetation cover
and diversity in Arctic ecosystems [65,123,124]. Although the NDWI was designed for
the extraction and mapping of water area boundaries [95], it also appears to be sensitive
to changes in soil water content. Indeed, the NDWI was among the most relevant pre-
dictors (AUC = 1.00) for discriminating the water class (represented by small ponds and
rivers) and two wetlands (represented by grass-dominated wetland and moss-dominated
wetland) (Table 3).

Water in the form of snow is one of the most important determinants of ecosystem
functions in high-latitude and high-altitude regions, where snow dominates the landscape
for most of the year [125–129]. During summer, perennial snowbanks gradually melt,
generating an inflow of melt water to areas downslope, thus influencing the richness,
composition, and biomass of plant communities [127,130–133]. Snow cover also increases
soil temperatures, which, in turn, increases nutrient availability via decomposition [134,135].
Uneven snow accumulation produces a wide spectrum of habitats, therefore enabling the
regional co-occurrence of a large range of species with contrasted ecological requirements,
from chionophilous (snow-dependent) to chionophobous (snow-avoiding) species [136].
For example, the forb-dominated barren, the driest vegetation class, had the furthest mean
distance from a snowbank (Table S2). In addition, we found that distance to snowbanks
emerged as the most important predictor of sedge-dominated wetland, thus confirming
Desjardins et al. [75], who had demonstrated at the same site an association between
this community and perennial snowbanks. To our knowledge, snowbanks were never
previously used as a predictor of vegetation classification in the Arctic. Nonetheless, some
studies included snow as a predictor in species distribution models or community models.
Specifically, incorporating remotely sensed snow persistency in species distribution models
helps predict the distribution of several vascular plants, mosses, and lichens in northern
Norway [137]. Another study modeled the distribution of one Arctic dwarf shrub species
in Svalbard using the snow cover derived from one satellite imagery taken in summer [138].
We recommend not neglecting information on snow in the vegetation classifications of
Arctic ecosystems where topographic heterogeneity generates uneven snow accumulation
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and duration. The quantity, quality, and seasonality of snow are projected to change all
over the tundra biome, although to varying extents depending on the region [125,126,133].
This will lead to changes in the distribution and composition of Arctic plant communities,
with cascading effects on many ecological processes [125], further justifying the monitoring
of snowbank shrinkage through repeated ecosystem classifications over time.

Soil-adjusted vegetation indices, developed to counteract the sensitivity of the NDVI
to soil background in hot deserts, can also be useful for polar deserts. Like hot deserts,
polar deserts have large expanses of bare soil [53]. Although soil-adjusted indices were
effective in classifying land cover classes in this study, another study conducted in Alaska
indicated that the NDVI was more strongly correlated to plant biomass than the soil-
adjusted indices [139]. However, vegetation cover was significantly more extensive in the
Alaska study area than at our site, which may explain why the SAVI was not as effective
at detecting canopy variables in their case. In a northern grassland in Saskatchewan, the
TSAVI was more correlated with biophysical parameters (e.g., leaf area index, percentage
of bare ground, and canopy height) than the NDVI [140]. The algorithm of the TSAVI takes
into account the slope and intercept of the soil line, which must be calculated specifically for
the site under study; these additional computations significantly limit its application [141].
In our study, soil-adjusted indices performed only slightly better than regular, nonsoil-
adjusted vegetation indices. Considering that each vegetation index has its limitations and
specificities, we advise testing several of them and identifying those most suitable for the
study site.

4.2. Classification Performance

Except for KNNs, all classifiers had a high overall accuracy (>81%; Table 4). The
RF classifier yielded a high accuracy, as confirmed by all accuracy scores and the visual
assessment of the classified map (Table 4, Figures 4 and 5), which justifies its popular
use in other Arctic ecosystem classifications (e.g., [1,7,38–40]). Surprisingly, a study in
the polar desert of Melville Island (Nunavut) comparing ML, RFs and SVMs found that
SVMs produced the highest classification accuracy (overall classification accuracy = 90.7%)
for eight land cover classes [44]. These contrasting results suggest that the selection of
classifiers is important to improve vegetation mapping in a given environment because no
image classifier is superior for all applications [4].

There were some noticeable discrepancies in the predictions of the ANNs, SVMs,
NB, and KNNs where the illuminated side of canyons were classified as snow instead
of forb-dominated barren (Figure 4). In addition, because the ArcticDEM from which
the hillshade originated had a coarser resolution (2 m) than the satellite imagery (0.5 m),
several small, shadowed areas were not masked prior to the classification. As a result,
these shadowed areas were mostly classified as water (Figure S3). The extent of these
misclassifications represented <1% of the study area, thus not compromising the use of the
final map for identifying wildlife habitats and selecting monitoring sites. The confusion
between shadowed areas and water is recurrent in classification studies performed at
high resolution [7,48,142], as water shares similar spectral characteristics as shadows [142].
Even creating an additional class for shadow in the classification (instead of creating a
shadow layer using a hillshade) did not solve the problem as there were several water areas
classified as shadow and vice versa (results not shown). Higher resolution DEMs should
be available for Arctic regions in the next few years, which will allow the computation of
more accurate hillshades and solve this issue. Another misclassification included a few
snowbanks that were classified as forb-dominated barren when they were covered by till
and gravel (Figure S4). This could explain why the distance to snowbanks was not among
the most important predictors to discriminate snow (Table 3). It was previously observed
that fresh snow had very high reflectivity in the visible and near-infrared, but its reflectivity
decreased over time as dirt accumulated and darkened the surface, inducing classification
errors [59].
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Combining multiple classifiers should increase the overall classification accuracy
or at least achieve an overall accuracy equivalent to the best performing algo-
rithms [66,143,144]. We found that the EC had a high accuracy (84.8%) comparable to
that of RFs (88%, confidence intervals overlapping; Table 4). Nevertheless, a visual compar-
ison of satellite imagery and classified maps suggested that using the EC allowed a better
delineation of land cover patches than using RFs. The EC has other advantages, such as
reducing classification bias appearing in individual classifiers (Figure 5a,b,e). However,
where ≥2 (out of 4) classifiers misclassified land cover classes, these errors were repeated
into the final classification of the EC (Figure 5c,d). One solution to further reduce errors
would be to combine more classifiers, as the higher the number of classifiers, the more
diluted the classification errors are [66]. Considering no individual classifier is perfect,
combining the most accurate ones represents a good compromise and may overcome diffi-
culties in selecting one specific classifier. We thus retained the map classified using the EC
for future uses at Alert.

According to the confusion matrix of the EC, snow, water, and moss-dominated wet-
land were perfectly discriminated (Table 5), mostly due to their unique spectral signal and
their spatial homogeneity [38]. More confusion, however, occurred between the remaining
vegetation classes. The verification of misclassified points indicated that errors occurred
mostly due to transitional states between communities, such as when forb-dominated
barren was confused with forb-dominated tundra, or forb-dominated tundra was confused
with grass-dominated wetland. Such confusions can be explained because the above pairs
are composed of the same plant species but with an ascending percentage of coverage.
Similarly, errors occurred due to a retrogression from one community to another (e.g.,
from grass-dominated wetland to forb-dominated tundra, the latter characterized by a
high number of dead stems of Alopecurus magellanicus Lamarck) or due to the presence of
mixed communities (e.g., grass-dominated and sedge-dominated wetlands were sometimes
intermingled within the same lush patches of vegetation) [75]. Some misclassifications
between the vegetation classes could also be related to soil humidity. The level of soil
moisture underlying vegetation can modify the spectral reflectance captured by the satel-
lite [45,145,146]. For example, moist areas produce higher NDVI values than dry or wet
environments [147]. Furthermore, grass- and sedge-dominated wetlands being both domi-
nated by graminoids characterized by vertically oriented, linear-shape foliage, their spectral
signature may not be sufficiently different to separate them efficiently when not in flower.
The linear foliage of graminoids may present a challenge for top-down remote sensing
because most of the leaf area is not apparent to the sensor [59]. Overall, this reflects the
difficulty in classifying perfectly plant communities in the High Arctic, which are often
characterized by low species diversity, large overlap in species composition, and gradual
rather than abrupt differences in vegetation cover [122].

4.3. Challenges and Recommendations

Our case study and literature review highlight a few challenges and generate sev-
eral recommendations regarding the adequate mapping of land cover classes in polar
deserts and other High Arctic regions. We structure these challenges and recommendations
according to nine themes that are common to most land cover mapping exercises.

4.3.1. Spectral Resolution

The literature suggests that classification performance increases with spectral resolu-
tion [44,148]. The inclusion of extra spectral data, whether in single bands or vegetation
indices, may reveal distinct characteristics of biotic and abiotic covers invisible to wider
spectral bands of multispectral imagery, including plant vigor and senescence, soil sat-
uration, litter materials, or background rock [1,4]. For example, due to their ability to
detect the strong absorption of cellulose and lignin, short-wave infrared (SWIR) bands (not
available in the Worldview imagery used in this study) are useful to study High Arctic
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vegetation, where there is a higher proportion of senescent or dry vegetation than in the
Low Arctic [145,146].

4.3.2. Spatial Resolution

The ideal scale for mapping vegetation and other land cover classes depends largely
on the purposes of the map. Medium spatial resolution (20–30 m) is widely used to
define terrestrial mammal habitats [5]. High spatial resolution (<5 m) is typically re-
quired for monitoring plant community changes over time in heterogeneous Arctic land-
scapes [1,147,149]. However, if species-level or functional type-level maps are needed, even
higher spatial resolution (<2 m) may be required [45,59].

4.3.3. Image Acquisition Date

The ability of satellite images to capture spatial variation in vegetation depends on
plant phenology at the time of image acquisition [50,150]. Capturing the peak growth of all
plant groups (e.g., shrubs, forbs, graminoids, mosses, and lichens) in a single satellite image
is not possible [150]. To address this challenge, spectral bands taken at different times
during the growing season can be used as predictors [6,50]. When it is impossible to acquire
several pictures due to high costs or cloud cover limitations, knowledge of the phenology
of the study site is important to adequately choose the date of the satellite imagery. For
example, we chose a date in 2020 when graminoids had reached their peak growth that
year as they are indicator species for two wetland communities at Alert [75].

4.3.4. Image Segmentation

Image segmentation depends on the spatial resolution of the initial imagery. When
using high resolution datasets, object-based methods are usually preferred over pixel-based
methods [98]. Reasons for this choice include (1) vegetation patches are usually larger than
pixels, hence pixels can be merged into homogeneous segments; (2) several land cover types
have a large internal heterogeneity in very high-resolution images, often due to shadow
effects caused by higher vegetation and boulders, which hamper pixel-based classifications;
and (3) generated homogeneous segments are a more realistic construction of the landscape
elements than pixels, and they better mimic human (and wildlife) interpretation of the
landscape [151].

When the segmentation method and its parameterization are chosen carefully, they
lead to improved classifications compared to pixel-based methods [42,152]. One of the most
important parameters is the segment size, which depends on the resolution requirements.
The optimal size of a segment is the largest size providing an adequate delineating of the
different land cover classes [38]. For example, there was a lower (2.5 m2) and an upper
(5 m2) limit for the optimal segmentation size to produce the most accurate classification
for a mosaicked peatland in Northern Finland [1]. The optimal segmentation size for
classification depends on the patchiness of vegetation and land cover types in the study
area and should be tested for every studied landscape. In addition, layers used to generate
the segmentation can be important. In our study, we used multispectral bands as they were
sufficient to differentiate land cover classes, but it is possible to add other types of layers.
For example, A’Campo et al. [38] based their segmentation upon the near-infrared band,
the green band, the NDVI, and some DEM-derived layers.

4.3.5. Land Cover Classes

The optimal number of land cover classes and the definition of each land cover class
depend on the purposes of the map. For wildlife habitat mapping, four to eight classes are
generally recommended [5]. There is no standard nomenclature for categorizing local-scale
land cover classes in the Arctic [6]. Nevertheless, using functional types is increasingly
put forward [40,50,153,154]. Broad physiognomic vegetation maps have limitations for
long-term monitoring because temporal changes in vegetation properties more likely in-
volve shifts in species composition than transitions across broad vegetation classes [6].
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Chapin et al. [155] thus recommended using Arctic-specific plant functional types in clas-
sifications aimed at capturing vegetation change through time. The suggested functional
types included deciduous shrubs, evergreen shrubs, sedges, grasses, forbs, Sphagnum L.
moss, non-Sphagnum moss, and lichens.

To obtain good classification accuracy, land cover classes must have good spectral
separability, which often implies a limited number of classes [44]. Increasing the number of
classes can reduce accuracy, which was the case when we initially attempted to divide the
forb-dominated barren into bare ground (5% mean plant cover) and xeric area (20% mean
plant cover).

4.3.6. Ground Truth Points

Land cover maps are only as credible as the underlying training data [59]. A suffi-
ciently large and representative training dataset helps prevent misclassification. Ground
reference points usually range between 9 and 112 per class [24,39,44], whereas we used
25–120 reference points per class (Table 2). To increase the accuracy of our maps, it was
necessary for the reference points to cover the full extent of spectral heterogeneity within
each land cover class, hence the addition of points through photo interpretation in our
methodology. Field data, however, provide a more reliable validation reference than
photo-interpreted data [59].

4.3.7. Predictors and Predictor Selection

Multiple predictors achieved a higher accuracy than more parsimonious models,
which is consistent with the literature [1,7,122]. For example, when using the top five
predictors (distance to snowbanks, the MSAVI2, the SAVI, the TSAVI, and the NDWI), we
obtained lower overall accuracies (RFs: 78.3%, ANNs: 80.4%, NB: 69.6%, SVMs: 71.7%,
LDA: 70.7%, CARTs: 79.4%, ML: 80.4%, and KNNs: 73.9%) than when using the 25 selected
predictors (Table 4). However, selecting predictors is important as it eliminates unimportant
predictors and improves the performance of the classification [100]. Except for KNNs and
LDA, the overall accuracy of the individual classifiers was lower, especially for ML, when
using all 38 predictors (RFs: 84.8%, ANNs: 80.4%, NB: 80.4%, SVMs: 82.6%, LDA: 82.6%,
CARTs: 79.4%, ML: 61.4%, KNNs: 81.5%).

Predictor selection requires an understanding of the studied ecosystem to filter suitable
predictors [7]. In our case study, we knew that perennial snowbanks were sustaining
the sedge-dominated wetlands, thus we included distance to the nearest snowbank as
a potential predictor. We recommend including distance to the nearest snowbank or
other snow-related predictors (e.g., the day of snow disappearance for each pixel) in
future classifications, especially in Arctic environments with heterogeneous topography.
Furthermore, given that each vegetation index has its limitations and specificities, we
advise testing several of them and identifying those most suitable to the study site.

4.3.8. Classification Algorithms

There is no superior classification method that can be applied universally [4], therefore
searching improved classifiers is important for remote sensing applications. We recommend
testing several classifiers and selecting the one that fits best. Alternatively, several classifiers
can be used to generate an ensemble model. We implemented and tested in R a multiclass
ensemble classifier based on majority voting, which performed well. There are other ways
of combining classifiers (e.g., weighted voting, stacking, boosting, and bagging) [66] that
are worth exploring.

4.3.9. Classification Validation

While some studies evaluate the final map visually to assess classification perfor-
mance [1,7], others only rely on accuracy metrics [44,48]. We consider visual evaluation
of the final classified map as a critical addition to accuracy metrics. Indeed, although it
requires time and knowledge of the area and involves subjectivity [4], accuracy metrics are
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not infallible. We found that the best performing classifiers did not all have the highest
overall accuracies, and, conversely, some classifiers with multiple erroneous predictions
had among the highest overall accuracies.

5. Conclusions

The last two decades have seen significant improvements in the ability to produce
land cover maps of Arctic ecosystems through remote sensing. However, due to the fine-
scale spatial heterogeneity of Arctic ecosystems, the main challenge remains to bridge the
information extracted from satellite imagery with the cover classes identified on the ground.
Moreover, as each region has its own specificities in terms of land cover classes, vegetation
structure, topography, and soil composition, there is no universal and transferable method
for all Arctic sites. Therefore, several studies spread across the circumpolar Arctic have
tested and proposed methods that were most relevant for their study site and needs. Here,
we found that some water-related indices and soil-adjusted indices were the most effective
predictors for discriminating land cover classes in a polar desert. In addition, the ensemble
classifier based on a majority voting algorithm yielded satisfactory predictions. Using an
ensemble classifier also avoided the need to choose a specific classifier. These results can
assist researchers in generating land cover classifications in the High Arctic serving their
own applications. We also argue that more detailed case studies, such as ours, are needed
to reflect the full variability of approaches pertinent to mapping land cover in the Arctic.
Arctic ecosystems are changing fast, and remote sensing techniques no doubt offer some of
the most useful tools for detecting and monitoring ongoing and future changes.
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standard deviations of the 38 potential predictors per land cover class; Figure S1: Top view of
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infrared, red, and green bands) satellite imagery (top panel) and classified subareas (9 lower panels)
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in the top panel) classified as water, grass-dominated wetland, snow, or sedge-dominated wetland
by RFs (random forests), ANNs (artificial neural networks), NB (naive Bayes), the EC (ensemble
classifier), SVMs (support vector machines), LDA (linear discriminant analysis), CARTs (classification
and regression trees), ML (maximum likelihood), and KNNs (K-nearest neighbors). Percentages
indicate overall accuracy of the classifiers, which was derived from the confusion matrices.; Figure S4:
False color infrared satellite imagery (top panel) and classified subareas (9 lower panels) within Alert
to illustrate that the snow covered by till and gravel (outlined by a white line in the top panel) were
incorrectly classified as forb-dominated barren by all classifiers, except classification and regression
trees (CARTs). RFs (random forests), ANNs (artificial neural networks), NB (naive Bayes), the
EC (ensemble classifier), SVMs (support vector machines), LDA (linear discriminant analysis), ML
(maximum likelihood), and KNNs (K-nearest neighbors). Percentages indicate overall accuracy of
the classifiers, which was derived from the confusion matrices.
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