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Climate change is predicted to be most severe in northern regions and there has been much interest in
to what extent organisms can cope with these changes through phenotypic plasticity or microevolutionary
processes. A red squirrel population in the southwest Yukon, Canada, faced with increasing spring tem-
peratures and food supply has advanced the timing of breeding by 18 days over the last 10 years (6 days
per generation). Longitudinal analysis of females breeding in multiple years suggests that much of this
change in parturition date can be explained by a plastic response to increased food abundance (3.7 days
per generation). Significant changes in breeding values (0.8 days per generation), were in concordance
with predictions from the breeder’s equation (0.6 days per generation), and indicated that an evolutionary
response to strong selection favouring earlier breeders also contributed to the observed advancement of
this heritable trait. The timing of breeding in this population of squirrels, therefore, has advanced as a
result of both phenotypic changes within generations, and genetic changes among generations in response
to a rapidly changing environment.
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1. INTRODUCTION

Climate is predicted to change at an increasing rate in the
future and several studies have demonstrated ecological
changes in wild plant and animal populations in response
to climate change (Walther et al. 2002). Most studies,
however, have interpreted observed phenotypic changes as
behavioural or physiological (i.e. plastic) responses to
environmental change (Brown et al. 1994; Crick et al.
1997; Hofgaard et al. 1999; Inouye et al. 2000; Both &
Visser 2001; but see Janzen 1994; Bradshaw & Holzapfel
2001; Etterson & Shaw 2001). While these mechanisms
allow an organism to cope with short-term environmental
change, microevolution (genetic response to consistent
selection on heritable traits; Falconer & Mackay 1996;
Roff 1997; Lynch & Walsh 1998) is thought to be essential
for the persistence of populations faced with long-term
directional changes in the environment (Lande & Shan-
non 1996; Lynch 1996).

Evolutionary responses to selection can be predicted
using the breeder’s equation R = h 2S, where R is the
change in the trait mean from one generation to the next,
h 2 is the heritability estimate of the trait z, and S is the
selection differential on z (Falconer & Mackay 1996; Roff
1997). Despite the increasing number of studies showing
consistent selection pressures on heritable traits, evidence
for phenotypic responses to selection that are consistent
with predictions from the breeder’s equation are generally
lacking for natural populations (Merilä et al. 2001b). This

*Author for correspondence (dreale@po-box.mcgill.ca).

Proc. R. Soc. Lond. B (2003) 270, 591–596 591 Ó 2003 The Royal Society
DOI 10.1098/rspb.2002.2224

is due not only to the rarity of data available to predict
evolutionary changes in natural populations, but also from
studies reporting apparent evolutionary stasis or pheno-
typic responses in the opposite direction to the one pre-
dicted (Van Noordwijk et al. 1981a,b; Price et al. 1988;
Price & Liou 1989; Alatalo et al. 1990; for a recent review
see Merilä et al. 2001b).

Restricted maximum-likelihood ‘animal models’
developed in animal breeding science provide a powerful
tool for estimating quantitative genetic parameters in
natural populations (Merilä et al. 2001b). These animal
models are particularly well suited to unbalanced datasets
typical of natural populations, but have only recently been
applied to wild populations in a limited though increasing
number of studies (Réale et al. 1999; Kruuk et al. 2000,
2001; Milner et al. 2000; Réale & Festa-Bianchet 2000;
Coltman et al. 2001; Merilä et al. 2001a; McAdam et al.
2002). A further advantage of the animal-model method
is that it provides estimates of individual breeding values.
A breeding value represents the combined additive effects
of all an individual’s genes for a given trait and changes
in estimated breeding values (EBVs) across generations
represent changes in additive genetic variance due to
selection, drift or inbreeding (Lynch & Walsh 1998). As
a result, this approach can be used to differentiate between
temporal phenotypic changes due to genetic and environ-
mental sources (e.g. Merilä et al. 2001a).

Here, we report a large advancement in the mean life-
time parturition date of female North American red squir-
rels (Tamiasciurus hudsonicus) that coincided with changes
in spring weather and food abundance, in a population
near Kluane Lake, Yukon, Canada. Parturition date in
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this population of red squirrels is both heritable
(h 2 = 0.16) and has been under consistent directional
selection (i = 20.17; D. Réale, D. Berteaux, A. G. McA-
dam and S. Boutin, unpublished data). In this paper, we
estimated the degree of phenotypic plasticity in parturition
date (sensu Przybylo et al. 2000) and used a restricted
maximum-likelihood animal model to document changes
in breeding values across four generations to determine
the degree to which these documented changes in partur-
ition date resulted from phenotypic plasticity and from
microevolution.

2. MATERIAL AND METHODS

We studied North American red squirrels (T. hudsonicus) near
Kluane Lake, Yukon, Canada. The habitat was open boreal for-
est with white spruce (Picea glauca) as the dominant canopy tree.
The entire population of ca. 325 squirrels was ear-tagged and
the reproductive activity of all females was monitored each year
(1989–2001) from March to late August (Berteaux & Boutin
2000). Parturition dates were estimated from the trapping rec-
ords of each female and the size of offspring when the nest was
first inspected (Boutin & Larsen 1993; Berteaux & Boutin 2000;
Humphries & Boutin 2000). Most identified young were moni-
tored from birth through to adulthood. Weather data were col-
lected at the Burwash weather station, located 50 km from the
study site. Spring temperature (in °C) was calculated for each
year from 1975 to 2001 as the average of mean monthly tem-
peratures from April to June (the time of lactation). Spring pre-
cipitation was calculated as the total precipitation (in mm) from
January to June. Temporal trends in climate were assessed using
separate ordinary least-squares regressions based on annual
values (n = 27).

(a) Environmental changes and reproduction
For each female born between 1989 and 1998 we calculated

lifetime parturition date as the average of all her parturition
dates during her reproductive lifetime (up to 2001) corrected
for age effects (see D. Réale, D. Berteaux, A. G. McAdam and
S. Boutin, unpublished data). Spruce cones stored in the aut-
umn of a given year are an important source of food for repro-
ductive females in the spring of the following year. The number
of cones on the top 3 m of 296–315 trees were counted every
August and averaged within years (Boutin & Larsen 1993).
These values (log transformed) represented an annual index of
the availability of food. Yearly spruce cone indices were averaged
across each female’s reproductive lifetime as a measure of the
average food abundance she experienced during her repro-
ductive lifetime.

We used weighted linear regressions to determine whether sig-
nificant changes in food abundance and parturition date (mean
lifetime values) had occurred in this area across the last 10
cohorts (1989–1998; n = 10). Regressions were weighted based
on the number of females within each cohort.

(b) Plastic changes in parturition date
A linear mixed-effects model of multiple breeding events by

individual females in more than 1 year was used to estimate the
plastic response of females to variation in food abundance
(Przybylo et al. 2000). All females born between 1989 and 1998
that bred in more than 1 year were included in the analysis
(n = 767 observations, 277 females). Age and female identity
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were included as fixed and random effects, respectively, and the
index of spruce cone abundance was fitted as a covariate.

(c) Microevolutionary changes in parturition date
Heritability, EBVs and environmental effects on parturition

date were estimated through a mixed-effects ‘animal model’,
using a derivative-free restricted maximum-likelihood program
(DFReML v. 3.1 (Meyer 1989); for applications to natural
populations see Réale et al. (1999), Kruuk et al. (2000, 2001),
Milner et al. (2000) and Merilä et al. (2001a)). Unlike the plas-
ticity analysis, this analysis did not require multiple breeding
events per female, so the dataset increased to 1058 breeding
events by 664 females (zero to six records per female) between
1988 and 2001 (372 base animals; 180 dams with progeny; 72
grand dams with progeny). Age was included as a fixed effect.
The spruce cone index was included as a covariate to account
for the documented response of females to food abundance and
year of breeding was included as an additional random effect
to account for common environmental effects experienced by
breeding females other than cone abundance. The coefficient
for the effects of cones on parturition date (220.28 days cone
index2 1) was similar to the estimate obtained in the plasticity
analysis (223.12 ± 0.85 days cone index21). The inclusion of
permanent environmental effects did not significantly improve
the fit of the model (likelihood ratio test; p . 0.5) so results are
presented without the inclusion of these random effects. Breed-
ing values were estimated for all females in the pedigree using
the DFReML program, but only females from a known gener-
ation (n = 374) were used to examine changes in breeding values
across generations. Paternity is not known in this population so
we could not assess levels of inbreeding. Changes in the EBVs
of females across generations were used to determine whether
an evolutionary response to this environmental change had taken
place. Females born between 1989 and 1991 were arbitrarily
assigned to generation one. After 1991, daughters were assigned
a generation one greater than their mother, regardless of the year
in which they were born. Females born to mothers of unknown
generation were not assigned a generation (see D. Réale, D.
Berteaux, A. G. McAdam and S. Boutin, unpublished data).

(d) Maternal effects
We tested whether our EBVs were confounded by maternal

effects. Ordinary least-squares regression (n = 663) was used to
correlate EBVs from the animal model with five characteristics
of the neonatal environment experienced by females that may
have affected their future parturition date as adults: maternal
age, litter size, postpartum body mass (within 10 days of
parturition), a measure of maternal reproductive investment
(increase in maternal mass from parturition to emergence
(Humphries & Boutin 1996), and the spruce cone index in the
autumn prior to birth (i.e. food availability for the mother during
gestation and lactation). When data on a given maternal charac-
teristic were missing in a cell, we filled the missing cell by the
average value for this characteristic.

(e) Predicted changes
Changes in EBVs across generations were compared with the

predicted response of parturition date to selection from the bree-
der’s equation R = h 2i s z = h2S, where R is the change in the trait
mean from one generation to the next, h2 is the heritability esti-
mate of the trait z, i is the standardized selection differential
(i = S/sz), and sz is the standard deviation of z (Falconer &
Mackay 1996; Roff 1997). We ran a bootstrap procedure with
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5000 replicates (Manly 1997) using females with a known gener-
ation that died prior to 2000 to estimate, i and the mean predicted
response to selection (Rpred) and their associated standard error.
The selection differential on parturition date (i = 20.17 ± 0.05)
was estimated in a previous study (D. Réale, D. Berteaux, A. G.
McAdam and S. Boutin, unpublished data), based on the covari-
ance between relative lifetime fitness and average standardized
parturition date (Lande & Arnold 1983) for all females for which
lifetime data were available (n = 303; see D. Réale, D. Berteaux,
A. G. McAdam and S. Boutin, unpublished data). To account
for temporal heterogeneity in environmental conditions, which
may affect the covariance between traits and fitness and may bias
estimates of selection differential, we calculated relative lifetime
fitness W 9i = [S n

l = 1(wi,a,l/wa,l)]/W, where wi,a,l is the fitness value
(total number of offspring weaned) for the ith female at the ath
age at a particular year l, wa,l is the mean fitness of females of the
same age for the same year, n is the number of reproductive
events of the female i during her lifetime, and W is the average
lifetime fitness value in the population. For each female, we
calculated the standardized lifetime value of the trait:
zi = 1/nS n

l = 1[(xi,a,l 2 xa,l)/sxa,l
)], where the xi,a,l is the trait value of

the ith female at the ath age at a particular year l, and xa,l and
sxa,l are respectively the mean value and the standard deviation of
the trait for females of the ath age at the lth year, in the popu-
lation.

3. RESULTS

(a) Environmental changes and reproduction
In the southwest Yukon, spring temperature has

increased by nearly 2 °C (regression: F1 ,2 5 = 3.6, p = 0.07;
b = 0.074 ± 0.039 °C yr21) and there has been no parti-
cular trend for precipitation over the last 27 years
(regression: F1 ,25 = 0.5, p = 0.49; b = 20.6 ± 0.9 mm yr21).
Over the past 10 years the average number of cones avail-
able over a female’s lifetime has increased by over 35%
(figure 1a; F1 ,8 = 2.2; p = 0.056; b = 0.053 ± 0.024 cone
index cohort21; n = 10 cohorts). During this same 10-year
period, mean lifetime parturition date of female squirrels
advanced from ca. 128 days from 1 January (8 May) for
females born in 1989 to ca. 110 days from 1 January (20
April) for females born in 1998 (figure 1b; F1 ,8 = 5.9;
p = 0.0003; b = 22.02 ± 0.34 days cohort21; n = 10
cohorts). This represents a change of over two weeks in
just 10 years or ca. 6 days generation21 (figure 2).

(b) Phenotypic plasticity
Food abundance had a significant effect on breeding

date within individual females (F1 ,4 8 2 = 733.2,
p , 0.0001), indicating a large amount of phenotypic
plasticity for this trait, and a strong phenotypic effect
of food abundance on the timing of breeding
(b ± s.e. = 223.12 ± 0.85 days cone index21). As a conse-
quence, this effect of food availability on timing of breed-
ing, together with an increase in cone abundance over
time, accounted for most, but not all of the observed
advancement in breeding among generations (3.7
days generation21; figure 2).

(c) Microevolutionary changes
The mean estimated breeding value of female red squir-

rels differed consistently between generations (F3 ,3 6 9 = 5.3,
p = 0.001). EBVs advanced by an average of 0.8 days per
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Figure 1. Variation in parturition date and food abundance
in a North American red squirrel population at Kluane
Lake, Yukon, Canada. (a) Average spruce cone index (log
transformed) experienced by females during their
reproductive lifetime as a function of cohort. (b) Average
parturition date (Julian date ± s.e.) for each cohort of
females born between 1989 and 1998. Each data point
represents the mean for average lifetime parturition date of
individuals from a given cohort corrected for age effects.

generation (range: 0.62 to 0.95 days) such that EBVs of
females in generation 4 were 2.5 days earlier than those
of females in generation 1 (figure 3).

None of the five maternal variables (maternal age, litter
size, postpartum weight, reproductive investment and
food abundance) were significantly correlated with EBVs
(F1 ,6 5 7 , 1.0, p . 0.3) and together they explained a negli-
gible proportion of the variation in EBVs (r 2 = 0.002,
n = 663). Analysis of only females with a complete set of
maternal characteristics gave similar results (F1 ,1 7 3 , 1.35,
p . 0.17).

Parturition date in this population was found to have
significant levels of genetic variation (h 2 = 0.16 ± 0.03)
and has been subject to strong directional selection
(i = 20.17 ± 0.05; D. Réale, D. Berteaux, A. G. McAdam
and S. Boutin, unpublished data). Predicted changes
in parturition date using the breeder’s equation
(Rpred ± s.e = 20.60 ± 0.17 days generation21) were not sig-
nificantly different from the average observed changes in
EBVs across the four observed generations (t` = 21.177,
p . 0.1).
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Figure 2. Changes in mean parturition date across
generations. Closed circles represent mean observed
parturition date (±s.e.) and average cone abundance for each
generation (1–4 from left to right). The solid line represents
the predicted within-generation change in parturition date
(phenotypic plasticity ± s.e. (dashed lines)) in response to
observed changes in cone abundance.

4. DISCUSSION

The results of our study clearly demonstrate the ability
of a life-history trait in a natural population to respond to
large changes in environmental conditions. During the last
27 years the southwest Yukon has experienced increased
spring temperatures and more recently there has been a
large increase in the abundance of food experienced by
female squirrels. This population of squirrels responded
to these large environmental changes by advancing breed-
ing by 18 days over the last 10 years (6 days generation21).

This dramatic advancement in breeding comprised a
plastic response to increased food abundance as well as a
microevolutionary response to selection. EBVs were
advanced by ca. 2.5 days over this 10-year period, rep-
resenting a genetic advancement in breeding comparable
in magnitude to most previously reported phenotypic
responses to climate change (see Walther et al. 2002). The
paucity of previous evidence of a genetic response to cli-
mate change is not entirely surprising (but see Bradshaw &
Holzapfel 2001). It is extremely difficult to thoroughly
document microevolutionary responses to selection in
natural populations (but see Grant & Grant 1995, 2002;
Reznick et al. 1997; Merilä et al. 2001a).

Significant maternal effects have been documented in
natural populations of mammals (Kruuk et al. 2000;
Milner et al. 2000) including red squirrels (McAdam et
al. 2002) and heritability and EBVs from animal models,
such as the one used in this study, are potentially con-
founded by maternal effects (Milner et al. 2000). For
example, mothers in good condition may both breed earl-
ier and raise offspring that subsequently breed earlier. As
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Figure 3. Changes in EBVs (2s.e.) across generations.
Sample sizes within each generation (number of females) are
indicated above each bar.

a result the influence of maternal condition (maternal
effect) on both maternal and offspring breeding date
would bias EBVs negatively (condition and EBVs would
be negatively correlated). Previous studies have
accounted for maternal effects generally (m 2 ; proportion
of total phenotypic variation due to maternal variation
(Kruuk et al. 2000; Milner et al. 2000)) using paternity
information. In the absence of paternity data, we took
the alternative approach of estimating the influence of a
suite of potentially important maternal characteristics on
EBVs directly. None of the five maternal variables we
examined were significantly correlated with EBVs. This
analysis, however, was fully capable of identifying con-
founding maternal effects on EBVs. A separate analysis
of juvenile growth rates, which are known to be influ-
enced by maternal effects (h 2 = 0.10, m 2 = 0.81;
McAdam et al. 2002), using the same pedigree as above
(sample size was reduced due to missing data; 428
females; fixed effect: birth year; covariate: cone index)
resulted in an inflated estimate of h 2 (0.51) for juvenile
growth rates as expected. In addition, EBVs from this
growth rate animal model were significantly correlated
with litter size (regression: F1 ,3 8 8 = 4.4, p = 0.04;
b = 20.026 ± 0.012), indicating that litter size either con-
founded these EBVs or was genetically correlated with
growth rates. Both of these results are consistent with
previous work in this population (McAdam et al. 2002).
The absence of a correlation between parturition date
EBVs and the five maternal characteristics examined
here, suggests that these characters did not significantly
confound our EBVs and were not genetically correlated
with parturition date. It remains possible, however, that
some other unmeasured maternal effect may have con-
founded our EBVs.

Parturition date in this population was found to have
significant levels of genetic variation (h 2 = 0.16), has been
subject to strong directional selection (i = 20.17; D.
Réale, D. Berteaux, A. G. McAdam and S. Boutin,
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unpublished data) and predicted changes in parturition
date using the breeder’s equation matched observed
changes in breeding values across the four observed gener-
ations. Together with the significant advancement in
breeding values, these results provide strong evidence that
in addition to the very large plastic response within gener-
ations, there has also been a significant advancement in
breeding among generations due to directional selection in
this heritable trait. In this case, the response to directional
selection was accentuated by large environmental effects,
resulting in a greater than predicted phenotypic response
to consistent directional selection (cogradient variation
sensu Conover & Schultz 1995). The combination of
phenotypic changes within generations and microevol-
utionary changes among generations resulted in large
phenotypic responses to rapid changes in environmental
conditions experienced by this population of squirrels over
the past 10 years.
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