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this threshold as the temperature at which individuals

vity to suboptimal levels (i.e. less than four-time basal meta-
stain nestling provisioning and avoid overheating. We then
threshold to operative temperatures recorded at high
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impacts on sustained activity level. We predict buntings

behaviourally constrained at operative temperatures above
on they must reduce provisioning rates to avoid overheat-
sites had larger fluctuations in solar radiation, consistently
periods when operative temperatures exceeded 11.7°C.

latitude birds faced entire, consecutive days when parents
e to sustain required provisioning rates. These data indicate
ing is likely already disrupting the breeding performance of
irds and suggests counterintuitive and severe negative
ing at higher latitude breeding locations.

tly experience life-history stages that demand significant
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high-Arctic

CANADA

low-Arctic (64º N)

(a)

Figure 1. (a) The location of the low-Arctic and high-Arctic study sites examin
the high-Arctic ( photo: F. Vézina). (c) A three-dimensional printed model in
physiological factors (central limitation hypothesis [6]) or

capacity to dissipate heat is increased (e.g. by experimentally
constraints in the metabolic capacity of specific peripheral
tissues (peripheral limitation hypothesis [1]). Recently, Speak-
man & Król [7–9] proposed an alternative hypothesis, termed
the heat dissipation limit (HDL) theory, which contends that
the maximal rate of energy expenditure for an endothermic
animal is limited by physiological factors governing heat dis-
sipation capacity and the consequent avoidance of lethal
body temperatures. Importantly, whereas the peripheral
limitation hypothesis argues that energetic constraints may
act on a range of tissues and organs, the HDL theory pro-
poses a universal constraint in the form of heat dissipation
and provides a mechanistic link between an animal’s physio-
logical capacity to maximize energy expenditure with the
interplay between heat dissipation and ambient temperature.

Despite the conceptual gains that the HDL theory has
provided in linking heat dissipation capacity with energetic
expenditure, our ability to predict the ambient temperatures
that will constrain an animal’s performance (i.e. sustained
rate of energy expenditure) remains a major impediment to
assessing species vulnerability to climate change [10].
Although several studies have reported threshold tempera-
tures above which sustained activity and/or reproductive
performance were compromised (see [11] and references
therein), these studies derived threshold values from post
hoc analyses on behavioural observations and are therefore
not predictive by design. Recently, Rezende & Bacigalupe
[12] proposed a predictive analytical tool—the thermoregula-
tory polygon—for estimating the dimensional space in which
thermoregulation is possible given an animal’s combined rate
of energy expenditure and the environmental temperatures it
is operating within. Thermoregulatory polygons are built
from commonly measured physiological variables (basal
and maximal metabolic rate, and minimum and maximum
thermal conductance) to delineate the boundaries in which
heat production and dissipation are balanced [12]. Thus, ther-
moregulatory polygons can help estimate responses to
further warming by integrating concepts of the HDL theory
to predict the ambient temperatures over which endothermic
animals can sustain activity and avoid overheating. Surpris-
ingly, despite their potential as a predictive tool, to our
knowledge, only one study has applied thermoregulatory
RSPB20220300—4/8/22—08:02–Copy Edited by: Not Mentioned
polygons, using them to predict the energetic consequences
of activity time in nocturnal and diurnal mammals [5].

Among endotherms, birds are expected to be particularly
sensitive to increasing environmental temperatures [13,14].
The offspring-rearing period for parents with dependent
young requires substantial increases in sustained work
effort, with adults performing at rates often reported between
4 and 6 times their basal metabolic rate (BMR) [2,3,6],
although lower rates can also be observed depending on con-
ditions ([15,16], see [17] for a discussion on this topic). Any
excess heat generated as a by-product from foraging and pro-
visioning must ultimately be dissipated, or birds risk
overheating. Indeed, birds often decrease activity on days
with warmer ambient temperatures, likely a thermoregula-
tory response to avoid heat stress [18,19]. When a bird’s

REENLAND

(b)

(c)

mal Qtolerance in snow buntings (Plectrophenax nivalis). (b) A snow bunting in
-Arctic ( photo: O.P. Love). (Online version in colour.)
removing insulative feathers), provisioning adults can sustain
higher levels of activity and invest more in both their current
and future reproductive efforts [20–23]. Thus, reproductive
performance can be constrained by a bird’s capacity to dissi-
pate body heat produced during essential breeding activities,
suggesting that increasing environmental temperatures could
significantly impact reproductive success.

Here, we apply a thermoregulatory polygon to snow
buntings (Plectrophenax nivalis; figure 1b), an Arctic-breeding
songbird, to investigate how environmental temperature
affects the interaction between thermoregulation and sus-
tained energy expenditure. Applying thermoregulatory
polygons to Arctic endotherms is pertinent and valuable for
predicting how increasing temperatures under climate
change will impact certain life-history stages via heat con-
straints on behaviour. Many Arctic animals are cold
specialists and have evolved physiological adaptations for
minimizing heat loss [24,25]. Consequently, high-latitude
breeding species are likely vulnerable to even moderate
increases in ambient temperature [26–29]; an alarming fact
given that the Arctic has warmed faster than the global aver-
age and is expected to continue outpacing the global average
over the twenty-first century [4]. Additionally, O’Connor et al.
[26] recently showed that buntings become heat-stressed at
moderate air temperatures and have an extremely limited
evaporative cooling capacity. Consequently, highly active,



operative temperatures. In the high-Arctic, meteorological data

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

20220300

3127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

ARTICLE IN PRESS
breeding buntings exposed to constant solar radiation and
modest rises in air temperature would be more likely to
depend on behavioural thermoregulatory strategies (e.g.
reducing provisioning effort) rather than physiological mech-
anisms (e.g. sustained increases in evaporate water loss rates)
to dissipate body heat and avoid overheating.

Our goal was to estimate how sensitive buntings’ per-
formance may be to increasing Arctic temperatures, given
their limited heat dissipation capacity. We first used thermal
physiological data to construct a thermoregulatory polygon
and predict the threshold temperatures at which sustainable
performance would be expected to decline in buntings main-
taining thermal balance (i.e. heat produced = heat dissipated).
We then compared the thermoregulatory polygon prediction
to operative and air temperatures measured in the field at
two breeding sites separated by 18° of latitude, representing
the general southern and northern limits of this species
breeding range, to evaluate how heat constraints on bunting
performance (i) differed between a low- and high-Arctic
region and (ii) could translate into site-specific impacts on
reproductive performance and success.

2. Material and methods
(a) Operative and air temperature measurements
We measured operative (Te) and air (Ta) temperatures during the
bunting breeding period at two sites in northern Canada repre-
senting the low-Arctic (East Bay Island; 64°010 N, 81°470 W)
and high-Arctic (Alert; 82°300 N, 62°200 W; figure 1a). Operative
temperature represents the temperature of the thermal environ-
ment as perceived by an individual and integrates the physical
properties of the animal with the thermal properties of the
local environment [30]. To measure Te perceived by buntings at
our two sites, we used three-dimensional-printed, hollow plastic

bird models (hereafter three-dimensional models; [31,32];

figure 1c). We printed the three-dimensional models to match
the size and shape of an adult bunting (see electronic supplemen-
tary material, figure S1 in.appendix S1). Additionally, we painted
the three-dimensional models to match the spectral properties of
male buntings in breeding plumage. We focused on males given
their simplified monochromatic breeding plumage (figure 1b)
[33] and because males actively provision offspring at similar
rates to females [34]. We used a spectrophotometer (Ocean
Optics Jaz spectrometer) to measure the spectra of the black
(N = 16 birds) and white (N = 27 birds) feather regions of male
buntings. We used the pavo package in R [35] to convert the
spectra wavelengths to a red : green : blue (R : G : B) colour combi-
nation. We then used an R : G : B-to-paint converter (https://
www.e-paint.co.uk/convert-rgb.asp) to acquire a paint that
best matched the R : G : B colour combination of male bunting
feathers. We opted to paint the three-dimensional models instead
of placing the skin and plumage of a male bunting over the
models as this optimized our experimental design by allowing
us to record Te in numerous models simultaneously across a
broader geographical area [36]. Additionally, multiple studies
(e.g. [37,38]) suggest that rough approximations of the study
animal can be adequate for estimating operative temperature,
and therefore, we felt comfortable using numerous painted oper-
ative temperature models over a few models covered with the
feathers and skin of a male bunting.

We measured the internal temperature of each three-dimen-
sional model by placing a temperature logger in the centre of
each model. At the high-Arctic site, we drilled a hole in the
belly and secured an iButton (model DS1921G-F5, Maxim
Integrated, San Jose, CA USA; resolution = 0.5°C) in the
RSPB20220300—4/8/22—08:03–Copy Edited by: Not Mentioned
approximate centre (electronic supplementary material, figures
S2 and S3 in.appendix S1) by gluing it to the end of a wooden
dowel surrounded by a rubber stopper, creating an airtight seal
around the drill-hole (electronic supplementary material, figure
S4 in.appendix S1). At the low-Arctic site, models were similarly
set up except for using Hobo data loggers (Pendant model,
MX2201, Onset Inc., Bourne, MA USA; resolution = 0.1°C)
instead of iButtons, which we secured with silicone caulking.
At both sites, the three-dimensional-printed models were
secured to a wooden plank by gluing a wooden dowel to a
notch in the three-dimensional model (electronic supplementary
material, figures S3 and S4 in appendix S1). We cut the wooden
dowels to approximate the height of a standing bunting. We cov-
ered each plank in the field using the substrate beneath the
models to mimic the thermal properties of buntings’ natural
environment (electronic supplementary material, figure S5 in
appendix S1).

At each site, we deployed three-dimensional models within
representative breeding territories and across naturally occurring
habitats to adequately capture the thermal heterogeneity experi-
enced by buntings. In the high-Arctic, we deployed 68 three-
dimensional models and recorded Te every 5 min from 22 May to
7 September 2019. Models were deployed over six separate periods,
each lasting approximately 7 days (due to iButton memory limit-
ations). After 7 days, we downloaded the Te data and redeployed
the three-dimensional models to a new location. In the low-
Arctic, we deployed 13 three-dimensional models and recorded
Te continuously from 11 June to 19 July 2019 at 2 min intervals.

At both study sites, we collected Ta data to compare against
was measured at the National Oceanic and Atmospheric
Administration’s (NOAA) broadband radiation station located
adjacent to the Global Atmospheric Watch Observatory
(82°280 N, 62°300 W). These data are 1 min averages of Ta
obtained at a height of 3 m above the ground using an aspirated
Vaisala HMP-235 (PT100 sensor). In the low-Arctic, we collected
Ta values every 30 min from six Kestrel weather meters (model
5500, Boothwyn, PA, USA) placed 2–3 m above ground level at
separate locations across the study site.

(b) Thermoregulatory polygon parameters
and construction

We calculated the BMR (N = 28 birds), minimum wet thermal
conductance (Cmin; N = 20 birds) and maximum dry thermal con-
ductance (Cmax; N = 21 birds) using physiological data collected
on a wild population of buntings at our high-Arctic site from 2
June to 25 July 2018. All physiological data were derived from
previously published research [26,39] approved by the animal
care committee of the Université du Québec à Rimouski (CPA-
71–17-194, CPA-54-13-130 and CPA-71-17-195) and conducted
under scientific (NUN-SCI-15-05 and SC-48) and banding
permits (10889 and 10889E) from Environment and Climate
Change Canada. Information on gas analysers, experimental pro-
tocol, body and air temperature measurements, and equations
used for calculating metabolic rates are described in detail in
Le Pogam et al. [39–41] and O’Connor et al. [26]. Briefly, we
measured BMR overnight on fasted individuals resting inside a
darkened metabolic chamber at thermoneutral temperatures
(mean Ta = 26.2 ± 0.8°C; note, Ta = Te inside metabolic chambers
[30]). For Cmin, we measured metabolic rates on individuals at
a constant Ta below their lower critical temperature of 10°C
([24]; mean Ta =−19.0 ± 1.8°C). We did not measure rates of eva-
porative water loss during our Cmin runs and therefore for each
bird we calculated minimum wet thermal conductance as

Cmin ¼ MR
Tb � Ta

, ð2:1Þ

https://www.e-paint.co.uk/convert-rgb.asp
https://www.e-paint.co.uk/convert-rgb.asp
https://www.e-paint.co.uk/convert-rgb.asp


where MR represents metabolic rate in Watts, and Tb and Ta are
the mean body and air temperatures, respectively. At Ta below
the lower critical temperature, evaporative heat loss is minimal
and thus its inclusion has little influence on Cmin [42]. During
metabolic measurements for Cmin, we measured Tb at the start
and end of each run and used the mean value for our
calculations.

We determined Cmax by exposing birds to gradually
increasing Ta [26]. We only included birds that tolerated Ta
above 31.5°C, representing the mean Ta minus the s.d. at which
buntings started panting [26], as we assumed that birds that
had initiated panting had reached their Cmax [43]. This resulted
in the removal of 1 bird from the dataset. At higher Ta, evapora-
tive heat loss becomes significant and must be accounted for in
the calculation of Cmax [42]. We thus calculated maximum dry
thermal conductance for each bird as

Cmax ¼ (MR� EHL)
ðTb � TaÞ , ð2:2Þ

where EHL represents evaporative heat loss measured during
respirometry trials [26]. During Cmax experiments, we measured
Tb continuously and therefore could calculate an average Tb over
the same 5 min time window that metabolic rates were calculated
[26].

To build the thermoregulatory polygon, we calculated a com-
bined mean across birds for each parameter (i.e. BMR, Cmin, Cmax

and Tb). The BMR mean became the bottom boundary of the
thermoregulatory polygon. The Cmin and Cmax means became
the slopes of the left and right boundaries, respectively. We
calculated the y-intercepts for the Cmin and Cmax slopes using
the equation:

MR ¼ CðTaÞ þ b, ð2:3Þ
where C represents the combined Cmin or Cmax mean across birds
and b is the y-intercept. We assumed Ta = Tb whenMR= 0 [42] and

buntings are typically observed provisioning from 4 July to 25
July (A. Le Pogam, personal observations) and at the low-
Arctic site from 3 July to 24 July [33,34]. We thus used these
respective periods to represent the typical provisioning period
at each site. We defined performance as a multiple of BMR and
assumed that four-time BMR is the minimum sustainable per-
formance required for adult buntings to adequately provision
nestlings [2,3]. Although lower levels of daily energy expenditure
during provisioning have been reported for other species [17], we
believe four-time BMR to be a plausible minimum sustainable
performance requirement for snow buntings given that (i) they
produce a single clutch during the breeding season, (ii) they
have a very short-time window for breeding and (iii) nestlings
grow fast and have a short growth period (approx. 13 days) for
a passerine of their size [48]. Therefore, we defined four-time
BMR as the energetic threshold for ‘optimal performance’, and
we calculated the percentage of time on a given day that bunt-
ings could work at either optimal (greater than or equal to
four-time BMR) or suboptimal (less than four-time BMR) per-
formance levels based on either Te or Ta. However, we did
include a continuous colour scheme into our figures to illustrate
the discrepancy around our four-time BMR threshold value,
thereby introducing a gradual transition into a darker red zone
representing a more serious impact on sustainable performance.
Lastly, we assumed buntings rested and reduced provisioning
rates for 3 h a day [49], and we therefore only used temperature
values measured between 01.00 and 22.00 when calculating the
daily percentage of time that buntings could work at optimal
or suboptimal performance levels.

3. Results
(a) Thermoregulatory polygon

steadily from the beginning of the breeding period until peak-
ing during the nestling-provisioning period and then
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used the combined Tb mean across birds during Cmin (41.0 ±
0.4°C) and Cmax (42.6 ± 0.7°C) measurements.

(c) Estimating sustainable performance in the high-
Arctic and low-Arctic

We conducted all analyses in R v. 4.0.4 [44]. In the high-Arctic,
we recorded a total of 843 773 individual Te values from 68
three-dimensional models and a total of 107 092 Ta values. In
the low-Arctic, we recorded 405 000 individual Te values from
13 models and a total of 10 803 Ta values. We used these raw
temperature data to create a time series of Te and Ta for each
site averaged at 1 h intervals using the timeAverage function in
the openair package [45].

The discontinuous sampling protocol in the high-Arctic (e.g.
downloading data and redeploying models) resulted in 643 1 h
gaps in our Te time series. To estimate the percentage of time
on a given day that buntings would have been behaviourally
constrained from heat (see below), it was necessary to fill these
gaps. We filled the Te gaps by fitting an artificial neural network
[46] with the neuralnet package [47] to predict Te based on seven
radiative and meteorological variables observed at the NOAA
broadband radiation station (see electronic supplementary
material, appendix S2 for details). The neural network predicted
hourly operative temperatures with an average mean square
error of 1.8°C (range = 1.2 to 2.7°C).

We used the Cmax slope to estimate the maximum sustainable
energy expenditure of buntings maintaining thermal balance
under either Ta or Te. As the provisioning period is one of the
most energetically expensive life-history stages for birds [3], we
focused on the maximal sustainable performance possible for
buntings during this period. At the high-Arctic site, adult
RSPB20220300—4/8/22—08:03–Copy Edited by: Not Mentioned
All values reported are mean ± s.d. The mean BMR of bunt-
ings was 0.564 ± 0.076 W. Mean thermal conductance varied
threefold, with a calculated minimum wet thermal conduc-
tance of 0.023 ± 0.005 W/°C and a maximum dry thermal
conductance of 0.073 ± 0.023 W/°C (figure 2a). The thermore-
gulatory polygon bounded by these parameters predicted
that buntings could maintain thermal balance and sustain
optimal performance (i.e. greater than four-time BMR) at
operative temperatures (Te) of up to 11.7°C (figure 2b).
Once Te exceeds 11.7°C, we expect buntings to become behav-
iourally constrained by heat and forced to perform at
suboptimal levels to avoid overheating.

(b) Estimated sustainable performance in the high-
Arctic and low-Arctic

At the high-Arctic site, Te and air temperatures (Ta) increased
gradually declined towards the post-fledging period (elec-
tronic supplementary material, figure S1a in appendix S3).
Operative temperatures experienced by buntings frequently
exceeded Ta, and on average were 3.5 ± 3.1°C warmer (range
of differences between Te and Ta =−4.9°C to 14.5°C; electronic
supplementary material, figure S1b in appendix S3).

At the high-Arctic site, Te, but not Ta, exceeded the pre-
dicted thermoregulatory polygon threshold value of 11.7°C
before 5 July (figure 3a). However, from 5 July to 5 August,
both Ta and Te periodically exceeded 11.7°C (figure 3a),
suggesting that buntings would have had to regularly per-
form at suboptimal levels below four-time BMR during this
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royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

20220300

5253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

ARTICLE IN PRESS
period. Within the nestling-provisioning period at the high-
latitude site (i.e. 4 July–25 July), buntings experienced
multi-day periods where they could have either performed
at optimal levels for their entire active period (i.e. 01.00–
22.00) or they would have been heat constrained and forced
to work at suboptimal levels (figure 4a). For example,
under Te, there were two periods of consecutive days (9–11
July and 19–22 July) where we predict that buntings could
have worked at optimal performance levels for their entire
active period (figure 4a). However, there were two periods
of consecutive days (6–8 July and 13–17 July) when Te
exceeded 11.7°C for their entire active period, and we predict
that buntings would have had to reduce their provisioning
rates to lower metabolic heat production and avoid overheat-
ing. From 13 to 19 July, buntings experienced only 5 h with Te
that we predict allowed them to both maintain thermal bal-
ance and sustain a performance level greater than or equal
to four-time BMR. Overall, under Te at the high-Arctic site,
the percentage of time each day that buntings would have
been behaviourally constrained from heat during their
active period ranged from a minimum of 19% (4 h) to a
maximum of 100% (21 h; figure 4a).

At the low-Arctic site, average hourly temperatures were
relatively consistent across the study period (electronic sup-
plementary material, figure S2a in appendix S3). The overall
mean difference between Te and Ta was 4.0 ± 4.1 (range =
−2.7°C to 15.5°C; electronic supplementary material, figure
S2b in appendix S3). In contrast with the high-Arctic site,
where both Te and Ta exceeded the threshold temperature
of 11.7°C, only Te at the low-Arctic site consistently placed
RSPB20220300—4/8/22—08:03–Copy Edited by: Not Mentioned
a heat constraint on buntings’ sustainable performance
(figure 3b). For example, during the typical nestling-provi-
sioning period in the low-Arctic (i.e. 3 July–24 July), we
predict that buntings would have been behaviourally con-
strained on just 4 days under Ta, whereas Te values suggest
that bunting performance would have been constrained to
some degree on 15 out of 17 days (figure 4b). Furthermore,
unlike the high-Arctic birds, we predict buntings at the
low-Arctic site would not be forced to perform at suboptimal
levels for their entire active period, but would instead be
forced to alter performance for a portion of each day
(figure 4b). Overall, under Te at the low-Arctic site, the per-
centage of time that buntings would have been
behaviourally constrained from heat on a given day during
their active period ranged from a minimum of 5% (1 h) to a
maximum of 67% (14 h; figure 4b).

4. Discussion
(a) Using the thermoregulatory polygon to predict

thermal constraints
The HDL theory postulates that an animal’s maximum sus-
tained energy expenditure scales with its capacity to
dissipate body heat [8]. Many factors influence an animal’s
thermoregulatory ability, including BMR and thermal con-
ductance [50,51]. Given buntings’ BMR and maximum dry
thermal conductance, the thermoregulatory polygon predicts
that at operative temperatures above 11.7°C, snow buntings
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Figure 3. Estimated sustainable performance possible for snow buntings (Plectrophenax nivalis) maintaining thermal balance at a (a) high-Arctic and (b) low-Arctic
breeding site. The transition into the blue zone represents the times when average hourly operative (Te) or air (Ta) temperature was below the thermoregulatory
polygon threshold temperature of 11.7°C, predicting that buntings could sustain performance levels≥ four-time BMR without altering behaviour. The transition into
the red zone represents the times when Te or Ta exceeded 11.7°C, predicting that buntings would be required to reduce their provisioning Q9behaviour and work below
four-time BMR to limit heat production and avoid overheating. Note that the darker the blue colour, the colder the recorded operative temperatures and the darker
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cannot maintain thermal balance and sustain activity at opti-
mal expenditure rates of four-time BMR. Consequently, when
operative temperature exceeds the threshold temperature for
extended periods, we would expect to observe a slower
growth rate in nestlings, prolonged breeding period and
potentially reduced fledging mass as adults reduce provision-
ing rates to maintain thermal balance [52,53]. Supporting a
temperature dependence on provisioning rates among bunt-
ings, Hoset et al. [54] reported lower parental feeding rates
during periods when air temperatures were high (the study
did not measure operative temperatures), even though the
range of air temperatures was small (e.g. 0–5°C). Similarly,
Cunningham et al. [55] reported lower provisioning rates at
higher ambient temperatures in common fiscals (Lanius col-
laris) and that fledglings were significantly lighter when
maximum air temperature frequently exceeded 33°C. The
comparatively low-threshold temperature for buntings
(11.7°C) likely stems from their physiological adaptions
for life in the cold [41]. Consequently, snow buntings’
cold specialization appears to come at the cost of not being
able to adequately dissipate heat through increases in
maximum thermal conductance at even moderate operative
temperatures.

Because the thermoregulatory polygon boundaries are set
by the thermal conductance of the animal, they represent the
space in which an animal can balance heat loss and gain
through non-evaporative pathways. Theoretically, an animal
could maintain thermal balance and sustain a high rate of
energy expenditure outside its thermoregulatory polygon
by continuously dissipating body heat evaporatively. How-
ever, O’Connor et al. [26] recently showed that the
evaporative cooling capacity of buntings is extremely limited,

for details). (Online version in colour.)
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with most birds unable to evaporatively shed an amount of
heat equivalent to their metabolic heat production. Therefore,
it is unlikely that snow buntings can rely on evaporative
cooling for prolonged periods to sustain activity outside
their thermoregulatory polygon limits and, instead, will
be highly dependent on behavioural thermoregulation.

e

breeding performance and success
Solar radiation is a major driving force of operative tempera-
ture and can vary by time of day, year or geographic location
[56,57]. Our two sites represent the general southern and
northern breeding limits for Arctic-breeding snow bunting
populations in Canada [49] and are separated by approxi-
mately 18° latitude. This difference leads to distinct
amounts of solar radiation reaching the earth’s surface [56],
likely producing the significant differences observed in the
duration and frequency that operative temperature exceeded
the predicted threshold temperature. For example, during the
peak nestling-provisioning period, buntings at the high-
Arctic site were predicted to frequently experience consecu-
tive days where they would not be able to perform at four
times their BMR. By contrast, buntings in the low-Arctic
were predicted to experience shorter, but more consistent
heat constraints on provisioning activity almost every day.
Given that snow bunting nestlings have some of the highest
recorded growth rates of any passerine (11–13% of adult
body mass per day; [48]), these latitudinal differences in con-
straints suggest that warming will produce different impacts
on provisioning behaviour, offspring growth and survival in
different populations. For instance, lower latitude breeding
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birds could possibly make up for reduced provisioning
opportunities each day by adjusting their activity budget;
working harder during the cooler periods to counteract over-
heating risks during warmer periods [5]. Indeed, under
identical heat loads, Tapper et al. [23] observed higher feeding
rates in wild female tree swallows (Tachycineta bicolor) that
had their ventral feathers clipped to experimentally increase
heat dissipation rates relative to unclipped females. Alterna-
tively, parents breeding at lower latitudes could provision
growing nestlings at lower rates per day and possibly
extend the developmental period of the growing young.
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male and female buntings feed young and thus the operative
temperatures experienced by females may differ from males
leading to different sex constraints on performance. For
instance, females lack the full dark back of male buntings
and hence may experience lower operative temperatures
allowing them to maintain higher provisioning rates than
males. Nevertheless, under such a scenario, we would still
predict negative impacts on nestling condition and fledgling
success as both parents cannot adequately feed young at
optimal rates.
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on nestlings and fledglings given that ground-nesting song-
bird species have evolved rapid growth rates and shorter
in-nest development periods due to high rates of nest preda-
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would need to reduce their maximal susta
diture and provision their offsprin
performance levels to balance heat loads a
ing. Importantly, our conclusions would
even if buntings were found to maintain lo
formance rates as reported in other specie
assuming buntings operated at thre
threshold value would rise to 19.4°C for
ance. Indeed, Alert has already been
periods of air temperatures above 20°C
suggesting even higher levels of operative
ever, we acknowledge that the actual susta
of provisioning snow buntings remain
empirically.

By examining impacts at both a low
breeding site, our data reveal site-specific
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flux, culminating in site-specific pattern
straints placed on an animal’s maxima
expenditure. It appears that synoptic-s
scale, 2–4 days) influences on local tempe
modulating operative temperatures in
whereas the diurnal cycle is the dominan
Arctic. We also argue that intraspecific
bunting populations in heat tolerance
given that recent genetic evidence sugges
our two study populations [62]. Additi
show comparable metabolic responses t
from Alert before breeding and wintering
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built upon physiological parameters from
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Collectively, our results indicate that w
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periods above their threshold temperature
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